Spaces:
Running
Running
| import os | |
| import glob | |
| import argparse | |
| import logging | |
| import json | |
| import subprocess | |
| import numpy as np | |
| from scipy.io.wavfile import read | |
| import torch | |
| import torchaudio | |
| import librosa | |
| from melo.text import cleaned_text_to_sequence, get_bert | |
| from melo.text.cleaner import clean_text | |
| from melo import commons | |
| MATPLOTLIB_FLAG = False | |
| logger = logging.getLogger(__name__) | |
| def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None): | |
| norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
| phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id) | |
| if hps.data.add_blank: | |
| phone = commons.intersperse(phone, 0) | |
| tone = commons.intersperse(tone, 0) | |
| language = commons.intersperse(language, 0) | |
| for i in range(len(word2ph)): | |
| word2ph[i] = word2ph[i] * 2 | |
| word2ph[0] += 1 | |
| if getattr(hps.data, "disable_bert", False): | |
| bert = torch.zeros(1024, len(phone)) | |
| ja_bert = torch.zeros(768, len(phone)) | |
| else: | |
| bert = get_bert(norm_text, word2ph, language_str, device) | |
| del word2ph | |
| assert bert.shape[-1] == len(phone), phone | |
| if language_str == "ZH": | |
| bert = bert | |
| ja_bert = torch.zeros(768, len(phone)) | |
| elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']: | |
| ja_bert = bert | |
| bert = torch.zeros(1024, len(phone)) | |
| else: | |
| raise NotImplementedError() | |
| assert bert.shape[-1] == len( | |
| phone | |
| ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
| phone = torch.LongTensor(phone) | |
| tone = torch.LongTensor(tone) | |
| language = torch.LongTensor(language) | |
| return bert, ja_bert, phone, tone, language | |
| def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
| iteration = checkpoint_dict.get("iteration", 0) | |
| learning_rate = checkpoint_dict.get("learning_rate", 0.) | |
| if ( | |
| optimizer is not None | |
| and not skip_optimizer | |
| and checkpoint_dict["optimizer"] is not None | |
| ): | |
| optimizer.load_state_dict(checkpoint_dict["optimizer"]) | |
| elif optimizer is None and not skip_optimizer: | |
| # else: Disable this line if Infer and resume checkpoint,then enable the line upper | |
| new_opt_dict = optimizer.state_dict() | |
| new_opt_dict_params = new_opt_dict["param_groups"][0]["params"] | |
| new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"] | |
| new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params | |
| optimizer.load_state_dict(new_opt_dict) | |
| saved_state_dict = checkpoint_dict["model"] | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| # assert "emb_g" not in k | |
| new_state_dict[k] = saved_state_dict[k] | |
| assert saved_state_dict[k].shape == v.shape, ( | |
| saved_state_dict[k].shape, | |
| v.shape, | |
| ) | |
| except Exception as e: | |
| print(e) | |
| # For upgrading from the old version | |
| if "ja_bert_proj" in k: | |
| v = torch.zeros_like(v) | |
| logger.warn( | |
| f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility" | |
| ) | |
| else: | |
| logger.error(f"{k} is not in the checkpoint") | |
| new_state_dict[k] = v | |
| if hasattr(model, "module"): | |
| model.module.load_state_dict(new_state_dict, strict=False) | |
| else: | |
| model.load_state_dict(new_state_dict, strict=False) | |
| logger.info( | |
| "Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration) | |
| ) | |
| return model, optimizer, learning_rate, iteration | |
| def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): | |
| logger.info( | |
| "Saving model and optimizer state at iteration {} to {}".format( | |
| iteration, checkpoint_path | |
| ) | |
| ) | |
| if hasattr(model, "module"): | |
| state_dict = model.module.state_dict() | |
| else: | |
| state_dict = model.state_dict() | |
| torch.save( | |
| { | |
| "model": state_dict, | |
| "iteration": iteration, | |
| "optimizer": optimizer.state_dict(), | |
| "learning_rate": learning_rate, | |
| }, | |
| checkpoint_path, | |
| ) | |
| def summarize( | |
| writer, | |
| global_step, | |
| scalars={}, | |
| histograms={}, | |
| images={}, | |
| audios={}, | |
| audio_sampling_rate=22050, | |
| ): | |
| for k, v in scalars.items(): | |
| writer.add_scalar(k, v, global_step) | |
| for k, v in histograms.items(): | |
| writer.add_histogram(k, v, global_step) | |
| for k, v in images.items(): | |
| writer.add_image(k, v, global_step, dataformats="HWC") | |
| for k, v in audios.items(): | |
| writer.add_audio(k, v, global_step, audio_sampling_rate) | |
| def latest_checkpoint_path(dir_path, regex="G_*.pth"): | |
| f_list = glob.glob(os.path.join(dir_path, regex)) | |
| f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) | |
| x = f_list[-1] | |
| return x | |
| def plot_spectrogram_to_numpy(spectrogram): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger("matplotlib") | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(10, 2)) | |
| im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") | |
| plt.colorbar(im, ax=ax) | |
| plt.xlabel("Frames") | |
| plt.ylabel("Channels") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def plot_alignment_to_numpy(alignment, info=None): | |
| global MATPLOTLIB_FLAG | |
| if not MATPLOTLIB_FLAG: | |
| import matplotlib | |
| matplotlib.use("Agg") | |
| MATPLOTLIB_FLAG = True | |
| mpl_logger = logging.getLogger("matplotlib") | |
| mpl_logger.setLevel(logging.WARNING) | |
| import matplotlib.pylab as plt | |
| import numpy as np | |
| fig, ax = plt.subplots(figsize=(6, 4)) | |
| im = ax.imshow( | |
| alignment.transpose(), aspect="auto", origin="lower", interpolation="none" | |
| ) | |
| fig.colorbar(im, ax=ax) | |
| xlabel = "Decoder timestep" | |
| if info is not None: | |
| xlabel += "\n\n" + info | |
| plt.xlabel(xlabel) | |
| plt.ylabel("Encoder timestep") | |
| plt.tight_layout() | |
| fig.canvas.draw() | |
| data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") | |
| data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) | |
| plt.close() | |
| return data | |
| def load_wav_to_torch(full_path): | |
| sampling_rate, data = read(full_path) | |
| return torch.FloatTensor(data.astype(np.float32)), sampling_rate | |
| def load_wav_to_torch_new(full_path): | |
| audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True) | |
| audio_norm = audio_norm.mean(dim=0) | |
| return audio_norm, sampling_rate | |
| def load_wav_to_torch_librosa(full_path, sr): | |
| audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True) | |
| return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate | |
| def load_filepaths_and_text(filename, split="|"): | |
| with open(filename, encoding="utf-8") as f: | |
| filepaths_and_text = [line.strip().split(split) for line in f] | |
| return filepaths_and_text | |
| def get_hparams(init=True): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "-c", | |
| "--config", | |
| type=str, | |
| default="./configs/base.json", | |
| help="JSON file for configuration", | |
| ) | |
| parser.add_argument('--local_rank', type=int, default=0) | |
| parser.add_argument('--world-size', type=int, default=1) | |
| parser.add_argument('--port', type=int, default=10000) | |
| parser.add_argument("-m", "--model", type=str, required=True, help="Model name") | |
| parser.add_argument('--pretrain_G', type=str, default=None, | |
| help='pretrain model') | |
| parser.add_argument('--pretrain_D', type=str, default=None, | |
| help='pretrain model D') | |
| parser.add_argument('--pretrain_dur', type=str, default=None, | |
| help='pretrain model duration') | |
| args = parser.parse_args() | |
| model_dir = os.path.join("./logs", args.model) | |
| os.makedirs(model_dir, exist_ok=True) | |
| config_path = args.config | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| if init: | |
| with open(config_path, "r") as f: | |
| data = f.read() | |
| with open(config_save_path, "w") as f: | |
| f.write(data) | |
| else: | |
| with open(config_save_path, "r") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| hparams.pretrain_G = args.pretrain_G | |
| hparams.pretrain_D = args.pretrain_D | |
| hparams.pretrain_dur = args.pretrain_dur | |
| hparams.port = args.port | |
| return hparams | |
| def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True): | |
| """Freeing up space by deleting saved ckpts | |
| Arguments: | |
| path_to_models -- Path to the model directory | |
| n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth | |
| sort_by_time -- True -> chronologically delete ckpts | |
| False -> lexicographically delete ckpts | |
| """ | |
| import re | |
| ckpts_files = [ | |
| f | |
| for f in os.listdir(path_to_models) | |
| if os.path.isfile(os.path.join(path_to_models, f)) | |
| ] | |
| def name_key(_f): | |
| return int(re.compile("._(\\d+)\\.pth").match(_f).group(1)) | |
| def time_key(_f): | |
| return os.path.getmtime(os.path.join(path_to_models, _f)) | |
| sort_key = time_key if sort_by_time else name_key | |
| def x_sorted(_x): | |
| return sorted( | |
| [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], | |
| key=sort_key, | |
| ) | |
| to_del = [ | |
| os.path.join(path_to_models, fn) | |
| for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep]) | |
| ] | |
| def del_info(fn): | |
| return logger.info(f".. Free up space by deleting ckpt {fn}") | |
| def del_routine(x): | |
| return [os.remove(x), del_info(x)] | |
| [del_routine(fn) for fn in to_del] | |
| def get_hparams_from_dir(model_dir): | |
| config_save_path = os.path.join(model_dir, "config.json") | |
| with open(config_save_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| hparams.model_dir = model_dir | |
| return hparams | |
| def get_hparams_from_file(config_path): | |
| with open(config_path, "r", encoding="utf-8") as f: | |
| data = f.read() | |
| config = json.loads(data) | |
| hparams = HParams(**config) | |
| return hparams | |
| def check_git_hash(model_dir): | |
| source_dir = os.path.dirname(os.path.realpath(__file__)) | |
| if not os.path.exists(os.path.join(source_dir, ".git")): | |
| logger.warn( | |
| "{} is not a git repository, therefore hash value comparison will be ignored.".format( | |
| source_dir | |
| ) | |
| ) | |
| return | |
| cur_hash = subprocess.getoutput("git rev-parse HEAD") | |
| path = os.path.join(model_dir, "githash") | |
| if os.path.exists(path): | |
| saved_hash = open(path).read() | |
| if saved_hash != cur_hash: | |
| logger.warn( | |
| "git hash values are different. {}(saved) != {}(current)".format( | |
| saved_hash[:8], cur_hash[:8] | |
| ) | |
| ) | |
| else: | |
| open(path, "w").write(cur_hash) | |
| def get_logger(model_dir, filename="train.log"): | |
| global logger | |
| logger = logging.getLogger(os.path.basename(model_dir)) | |
| logger.setLevel(logging.DEBUG) | |
| formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") | |
| if not os.path.exists(model_dir): | |
| os.makedirs(model_dir, exist_ok=True) | |
| h = logging.FileHandler(os.path.join(model_dir, filename)) | |
| h.setLevel(logging.DEBUG) | |
| h.setFormatter(formatter) | |
| logger.addHandler(h) | |
| return logger | |
| class HParams: | |
| def __init__(self, **kwargs): | |
| for k, v in kwargs.items(): | |
| if type(v) == dict: | |
| v = HParams(**v) | |
| self[k] = v | |
| def keys(self): | |
| return self.__dict__.keys() | |
| def items(self): | |
| return self.__dict__.items() | |
| def values(self): | |
| return self.__dict__.values() | |
| def __len__(self): | |
| return len(self.__dict__) | |
| def __getitem__(self, key): | |
| return getattr(self, key) | |
| def __setitem__(self, key, value): | |
| return setattr(self, key, value) | |
| def __contains__(self, key): | |
| return key in self.__dict__ | |
| def __repr__(self): | |
| return self.__dict__.__repr__() | |