Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
|
| 4 |
import onnx_asr
|
| 5 |
|
|
|
|
| 6 |
models = {
|
| 7 |
name: onnx_asr.load_model(name)
|
| 8 |
for name in [
|
|
@@ -19,8 +22,11 @@ models = {
|
|
| 19 |
|
| 20 |
def recoginize(audio: tuple[int, np.ndarray]):
|
| 21 |
sample_rate, waveform = audio
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
demo = gr.Interface(
|
|
|
|
| 1 |
+
from importlib.metadata import version
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
import onnx_asr
|
| 7 |
|
| 8 |
+
print(f"onnx_asr version: {version('onnx_asr')}")
|
| 9 |
models = {
|
| 10 |
name: onnx_asr.load_model(name)
|
| 11 |
for name in [
|
|
|
|
| 22 |
|
| 23 |
def recoginize(audio: tuple[int, np.ndarray]):
|
| 24 |
sample_rate, waveform = audio
|
| 25 |
+
try:
|
| 26 |
+
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
|
| 27 |
+
return [[name, model.recognize(waveform, sample_rate=sample_rate, language="ru")] for name, model in models.items()]
|
| 28 |
+
except Exception as e:
|
| 29 |
+
raise gr.Error(f"{e} Audio: sample_rate: {sample_rate}, waveform.shape: {waveform.shape}.") from e
|
| 30 |
|
| 31 |
|
| 32 |
demo = gr.Interface(
|