Add models and description
Browse files
app.py
CHANGED
|
@@ -3,17 +3,39 @@ import numpy as np
|
|
| 3 |
|
| 4 |
import onnx_asr
|
| 5 |
|
| 6 |
-
models = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def recoginize(audio: tuple[int, np.ndarray]):
|
| 10 |
sample_rate, waveform = audio
|
| 11 |
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
|
| 12 |
-
return [[name, model.recognize(waveform, sample_rate=sample_rate)] for name, model in models.items()]
|
| 13 |
|
| 14 |
|
| 15 |
demo = gr.Interface(
|
| 16 |
fn=recoginize,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
inputs=[gr.Audio(min_length=1, max_length=10)],
|
| 18 |
outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)],
|
| 19 |
flagging_mode="never",
|
|
|
|
| 3 |
|
| 4 |
import onnx_asr
|
| 5 |
|
| 6 |
+
models = {
|
| 7 |
+
name: onnx_asr.load_model(name)
|
| 8 |
+
for name in [
|
| 9 |
+
"gigaam-v2-ctc",
|
| 10 |
+
"gigaam-v2-rnnt",
|
| 11 |
+
"nemo-fastconformer-ru-ctc",
|
| 12 |
+
"nemo-fastconformer-ru-rnnt",
|
| 13 |
+
"alphacep/vosk-model-ru",
|
| 14 |
+
"alphacep/vosk-model-small-ru",
|
| 15 |
+
"whisper-base",
|
| 16 |
+
]
|
| 17 |
+
}
|
| 18 |
|
| 19 |
|
| 20 |
def recoginize(audio: tuple[int, np.ndarray]):
|
| 21 |
sample_rate, waveform = audio
|
| 22 |
waveform = waveform.astype(np.float32) / 2 ** (8 * waveform.itemsize - 1)
|
| 23 |
+
return [[name, model.recognize(waveform, sample_rate=sample_rate, language="ru")] for name, model in models.items()]
|
| 24 |
|
| 25 |
|
| 26 |
demo = gr.Interface(
|
| 27 |
fn=recoginize,
|
| 28 |
+
title="ASR demo using onnx-asr (Russian models)",
|
| 29 |
+
description="""# Automatic Speech Recognition in Python using ONNX models - [onnx-asr](https://github.com/istupakov/onnx-asr)
|
| 30 |
+
## Models used in demo:
|
| 31 |
+
* `gigaam-v2-ctc` - Sber GigaAM v2 CTC ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
|
| 32 |
+
* `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
|
| 33 |
+
* `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
| 34 |
+
* `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
| 35 |
+
* `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru))
|
| 36 |
+
* `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru))
|
| 37 |
+
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
|
| 38 |
+
""",
|
| 39 |
inputs=[gr.Audio(min_length=1, max_length=10)],
|
| 40 |
outputs=[gr.Dataframe(headers=["Model", "result"], wrap=True, show_fullscreen_button=True)],
|
| 41 |
flagging_mode="never",
|