Spaces:
Runtime error
Runtime error
update
Browse files- __pycache__/model.cpython-310.pyc +0 -0
- app.py +16 -25
- model.py +14 -5
__pycache__/model.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/model.cpython-310.pyc and b/__pycache__/model.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -6,18 +6,12 @@ from collections import defaultdict
|
|
| 6 |
import streamlit as st
|
| 7 |
from streamlit_drawable_canvas import st_canvas
|
| 8 |
|
| 9 |
-
import torch
|
| 10 |
-
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
| 11 |
-
from diffusers import StableDiffusionInpaintPipeline
|
| 12 |
-
|
| 13 |
import matplotlib as mpl
|
| 14 |
|
| 15 |
-
from model import segment_image, inpaint
|
| 16 |
|
| 17 |
|
| 18 |
# define utils and helpers
|
| 19 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 20 |
-
|
| 21 |
def closest_number(n, m=8):
|
| 22 |
""" Obtains closest number to n that is divisble by m """
|
| 23 |
return int(n/m) * m
|
|
@@ -96,7 +90,10 @@ def get_mask(image, edit_method, height, width):
|
|
| 96 |
|
| 97 |
if __name__ == '__main__':
|
| 98 |
|
| 99 |
-
st.title("Stable Edit
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
sf = st.text_input("Please enter resizing scale factor to downsize image (default=2)", value="2")
|
| 102 |
try:
|
|
@@ -126,22 +123,16 @@ if __name__ == '__main__':
|
|
| 126 |
|
| 127 |
# get inpainted images
|
| 128 |
prompt = st.text_input("Please enter prompt for image inpainting", value="")
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# display all images
|
| 141 |
-
st.write("Original Image")
|
| 142 |
-
st.image(image)
|
| 143 |
-
for i, img in enumerate(images, 1):
|
| 144 |
-
st.write(f"result: {i}")
|
| 145 |
-
st.image(img)
|
| 146 |
|
| 147 |
|
|
|
|
| 6 |
import streamlit as st
|
| 7 |
from streamlit_drawable_canvas import st_canvas
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import matplotlib as mpl
|
| 10 |
|
| 11 |
+
from model import device, segment_image, inpaint
|
| 12 |
|
| 13 |
|
| 14 |
# define utils and helpers
|
|
|
|
|
|
|
| 15 |
def closest_number(n, m=8):
|
| 16 |
""" Obtains closest number to n that is divisble by m """
|
| 17 |
return int(n/m) * m
|
|
|
|
| 90 |
|
| 91 |
if __name__ == '__main__':
|
| 92 |
|
| 93 |
+
st.title("Stable Edit")
|
| 94 |
+
st.title("Edit your photos with Stable Diffusion!")
|
| 95 |
+
|
| 96 |
+
st.write(f"Device found: {device}")
|
| 97 |
|
| 98 |
sf = st.text_input("Please enter resizing scale factor to downsize image (default=2)", value="2")
|
| 99 |
try:
|
|
|
|
| 123 |
|
| 124 |
# get inpainted images
|
| 125 |
prompt = st.text_input("Please enter prompt for image inpainting", value="")
|
| 126 |
+
|
| 127 |
+
if prompt: # and isinstance(seed, int):
|
| 128 |
+
st.write("Inpainting Images, patience is a virtue and this will take a while to run on a CPU :)")
|
| 129 |
+
images = inpaint(image, mask, width, height, prompt=prompt, seed=0, guidance_scale=17.5, num_samples=3)
|
| 130 |
+
|
| 131 |
+
# display all images
|
| 132 |
+
st.write("Original Image")
|
| 133 |
+
st.image(image)
|
| 134 |
+
for i, img in enumerate(images, 1):
|
| 135 |
+
st.write(f"result: {i}")
|
| 136 |
+
st.image(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
|
model.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
| 3 |
-
from diffusers import StableDiffusionInpaintPipeline
|
| 4 |
|
| 5 |
|
| 6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
@@ -30,7 +30,7 @@ def segment_image(image):
|
|
| 30 |
|
| 31 |
return seg_prediction, segment_labels
|
| 32 |
|
| 33 |
-
# Image inpainting
|
| 34 |
# get Stable Diffusion model for image inpainting
|
| 35 |
if device == 'cuda':
|
| 36 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
@@ -39,9 +39,18 @@ if device == 'cuda':
|
|
| 39 |
).to(device)
|
| 40 |
else:
|
| 41 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 42 |
-
"runwayml/stable-diffusion-inpainting"
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def inpaint(image, mask, W, H, prompt="", seed=0, guidance_scale=17.5, num_samples=3):
|
| 47 |
""" Uses Stable Diffusion model to inpaint image
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
| 3 |
+
from diffusers import StableDiffusionInpaintPipeline # , DiffusionPipeline
|
| 4 |
|
| 5 |
|
| 6 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 30 |
|
| 31 |
return seg_prediction, segment_labels
|
| 32 |
|
| 33 |
+
# Image inpainting pipeline
|
| 34 |
# get Stable Diffusion model for image inpainting
|
| 35 |
if device == 'cuda':
|
| 36 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
|
|
| 39 |
).to(device)
|
| 40 |
else:
|
| 41 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
| 42 |
+
"runwayml/stable-diffusion-inpainting",
|
| 43 |
+
torch_dtype=torch.bfloat16,
|
| 44 |
+
device_map="auto"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# pipe = StableDiffusionInpaintPipeline.from_pretrained( # DiffusionPipeline.from_pretrained(
|
| 48 |
+
# "runwayml/stable-diffusion-inpainting",
|
| 49 |
+
# revision="fp16",
|
| 50 |
+
# torch_dtype=torch.bfloat16,
|
| 51 |
+
# # device_map="auto" # use for Hugging face spaces
|
| 52 |
+
# )
|
| 53 |
+
# pipe.to(device) # use for local environment
|
| 54 |
|
| 55 |
def inpaint(image, mask, W, H, prompt="", seed=0, guidance_scale=17.5, num_samples=3):
|
| 56 |
""" Uses Stable Diffusion model to inpaint image
|