Update app.py
Browse files
app.py
CHANGED
|
@@ -81,47 +81,76 @@ def upload_to_s3(file_name, bucket, object_name=None):
|
|
| 81 |
except NoCredentialsError:
|
| 82 |
return False
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
@spaces.GPU
|
| 85 |
-
def run_showui(image, query, session_id):
|
| 86 |
-
"""Main function for inference."""
|
| 87 |
image_path = array_to_image_path(image, session_id)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
generated_ids_trimmed
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None):
|
| 127 |
"""Save the data to a JSON file and upload to S3."""
|
|
@@ -221,6 +250,10 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
| 221 |
|
| 222 |
Then upload/paste from clipboard 🤗
|
| 223 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
textbox = gr.Textbox(
|
| 225 |
show_label=True,
|
| 226 |
placeholder="Enter a query (e.g., 'Click Nahant')",
|
|
@@ -258,13 +291,9 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
| 258 |
)
|
| 259 |
|
| 260 |
with gr.Column(scale=8):
|
| 261 |
-
|
| 262 |
-
gr.
|
| 263 |
-
|
| 264 |
-
<p><strong>Note:</strong> The <span style="color: red;">red point</span> on the output image represents the predicted clickable coordinates.</p>
|
| 265 |
-
"""
|
| 266 |
-
)
|
| 267 |
-
output_coords = gr.Textbox(label="Clickable Coordinates")
|
| 268 |
|
| 269 |
gr.HTML(
|
| 270 |
"""
|
|
@@ -276,28 +305,28 @@ def build_demo(embed_mode, concurrency_count=1):
|
|
| 276 |
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
|
| 277 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
| 278 |
|
| 279 |
-
def on_submit(image, query, is_example_image):
|
| 280 |
if image is None:
|
| 281 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
| 282 |
|
| 283 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 284 |
|
| 285 |
-
|
| 286 |
|
| 287 |
-
save_and_upload_data(
|
| 288 |
|
| 289 |
-
return
|
| 290 |
|
| 291 |
submit_btn.click(
|
| 292 |
on_submit,
|
| 293 |
-
[imagebox, textbox, is_example_dropdown],
|
| 294 |
-
[
|
| 295 |
)
|
| 296 |
|
| 297 |
clear_btn.click(
|
| 298 |
-
lambda: (None, None, None, None
|
| 299 |
inputs=None,
|
| 300 |
-
outputs=[imagebox, textbox,
|
| 301 |
queue=False
|
| 302 |
)
|
| 303 |
|
|
@@ -324,4 +353,4 @@ if __name__ == "__main__":
|
|
| 324 |
server_port=7860,
|
| 325 |
ssr_mode=False,
|
| 326 |
debug=True,
|
| 327 |
-
)
|
|
|
|
| 81 |
except NoCredentialsError:
|
| 82 |
return False
|
| 83 |
|
| 84 |
+
def crop_image(image_path, click_xy, crop_factor=0.5):
|
| 85 |
+
"""Crop the image around the click point."""
|
| 86 |
+
image = Image.open(image_path)
|
| 87 |
+
width, height = image.size
|
| 88 |
+
crop_width, crop_height = int(width * crop_factor), int(height * crop_factor)
|
| 89 |
+
|
| 90 |
+
center_x, center_y = int(click_xy[0] * width), int(click_xy[1] * height)
|
| 91 |
+
left = max(center_x - crop_width // 2, 0)
|
| 92 |
+
upper = max(center_y - crop_height // 2, 0)
|
| 93 |
+
right = min(center_x + crop_width // 2, width)
|
| 94 |
+
lower = min(center_y + crop_height // 2, height)
|
| 95 |
+
|
| 96 |
+
cropped_image = image.crop((left, upper, right, lower))
|
| 97 |
+
cropped_image_path = f"cropped_{os.path.basename(image_path)}"
|
| 98 |
+
cropped_image.save(cropped_image_path)
|
| 99 |
+
|
| 100 |
+
return cropped_image_path
|
| 101 |
+
|
| 102 |
@spaces.GPU
|
| 103 |
+
def run_showui(image, query, session_id, iterations=2):
|
| 104 |
+
"""Main function for iterative inference."""
|
| 105 |
image_path = array_to_image_path(image, session_id)
|
| 106 |
|
| 107 |
+
click_xy = None
|
| 108 |
+
images_during_iterations = [] # List to store images at each step
|
| 109 |
+
|
| 110 |
+
for _ in range(iterations):
|
| 111 |
+
messages = [
|
| 112 |
+
{
|
| 113 |
+
"role": "user",
|
| 114 |
+
"content": [
|
| 115 |
+
{"type": "text", "text": _SYSTEM},
|
| 116 |
+
{"type": "image", "image": image_path, "min_pixels": MIN_PIXELS, "max_pixels": MAX_PIXELS},
|
| 117 |
+
{"type": "text", "text": query}
|
| 118 |
+
],
|
| 119 |
+
}
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
global model
|
| 123 |
+
model = model.to("cuda")
|
| 124 |
+
|
| 125 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 126 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 127 |
+
inputs = processor(
|
| 128 |
+
text=[text],
|
| 129 |
+
images=image_inputs,
|
| 130 |
+
videos=video_inputs,
|
| 131 |
+
padding=True,
|
| 132 |
+
return_tensors="pt"
|
| 133 |
+
)
|
| 134 |
+
inputs = inputs.to("cuda")
|
| 135 |
+
|
| 136 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 137 |
+
generated_ids_trimmed = [
|
| 138 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 139 |
+
]
|
| 140 |
+
output_text = processor.batch_decode(
|
| 141 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 142 |
+
)[0]
|
| 143 |
+
|
| 144 |
+
click_xy = ast.literal_eval(output_text)
|
| 145 |
+
|
| 146 |
+
# Draw point on the current image
|
| 147 |
+
result_image = draw_point(image_path, click_xy, radius=10)
|
| 148 |
+
images_during_iterations.append(result_image) # Store the current image
|
| 149 |
+
|
| 150 |
+
# Crop the image for the next iteration
|
| 151 |
+
image_path = crop_image(image_path, click_xy)
|
| 152 |
+
|
| 153 |
+
return images_during_iterations, str(click_xy)
|
| 154 |
|
| 155 |
def save_and_upload_data(image_path, query, session_id, is_example_image, votes=None):
|
| 156 |
"""Save the data to a JSON file and upload to S3."""
|
|
|
|
| 250 |
|
| 251 |
Then upload/paste from clipboard 🤗
|
| 252 |
""")
|
| 253 |
+
|
| 254 |
+
# Add a slider for iteration count
|
| 255 |
+
iteration_slider = gr.Slider(minimum=1, maximum=3, step=1, value=1, label="Refinement Steps")
|
| 256 |
+
|
| 257 |
textbox = gr.Textbox(
|
| 258 |
show_label=True,
|
| 259 |
placeholder="Enter a query (e.g., 'Click Nahant')",
|
|
|
|
| 291 |
)
|
| 292 |
|
| 293 |
with gr.Column(scale=8):
|
| 294 |
+
# output_gallery = gr.Gallery(label="Iterative Refinement", object_fit="contain")
|
| 295 |
+
output_gallery = gr.Gallery(label="Iterative Refinement")
|
| 296 |
+
output_coords = gr.Textbox(label="Final Clickable Coordinates")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
gr.HTML(
|
| 299 |
"""
|
|
|
|
| 305 |
downvote_btn = gr.Button(value="👎 Too bad!", variant="secondary")
|
| 306 |
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
|
| 307 |
|
| 308 |
+
def on_submit(image, query, iterations, is_example_image):
|
| 309 |
if image is None:
|
| 310 |
raise ValueError("No image provided. Please upload an image before submitting.")
|
| 311 |
|
| 312 |
session_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 313 |
|
| 314 |
+
images_during_iterations, click_coords = run_showui(image, query, session_id, iterations)
|
| 315 |
|
| 316 |
+
save_and_upload_data(images_during_iterations[-1], query, session_id, is_example_image)
|
| 317 |
|
| 318 |
+
return images_during_iterations, click_coords, session_id
|
| 319 |
|
| 320 |
submit_btn.click(
|
| 321 |
on_submit,
|
| 322 |
+
[imagebox, textbox, iteration_slider, is_example_dropdown],
|
| 323 |
+
[output_gallery, output_coords, state_session_id],
|
| 324 |
)
|
| 325 |
|
| 326 |
clear_btn.click(
|
| 327 |
+
lambda: (None, None, None, None),
|
| 328 |
inputs=None,
|
| 329 |
+
outputs=[imagebox, textbox, output_gallery, output_coords, state_session_id],
|
| 330 |
queue=False
|
| 331 |
)
|
| 332 |
|
|
|
|
| 353 |
server_port=7860,
|
| 354 |
ssr_mode=False,
|
| 355 |
debug=True,
|
| 356 |
+
)
|