Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import unittest | |
| from unittest.mock import patch | |
| import torch | |
| from transformers import AutoTokenizer | |
| from trl import AutoModelForCausalLMWithValueHead, TextEnvironment, TextHistory | |
| class DummyTool: | |
| def __call__(self, text): | |
| return text | |
| def dummy_generate(histories): | |
| for i in range(len(histories)): | |
| histories[i].append_segment("<request><DummyTool>test<call>", torch.tensor([1, 2, 3]), system=False) | |
| return histories | |
| class TextHistoryTest(unittest.TestCase): | |
| def test_text_history_init(self): | |
| text = "Hello there!" | |
| tokens = torch.tensor([1, 2, 3]) | |
| history = TextHistory(text, tokens) | |
| self.assertEqual(history.text, text) | |
| self.assertTrue(torch.equal(history.tokens, tokens)) | |
| self.assertTrue(torch.equal(history.token_masks, torch.zeros_like(tokens))) | |
| history = TextHistory(text, tokens, system=False) | |
| self.assertTrue(torch.equal(history.token_masks, torch.ones_like(tokens))) | |
| def test_text_history_append_segment(self): | |
| text = "Hello there!" | |
| tokens = torch.tensor([1, 2, 3]) | |
| history = TextHistory(text, tokens) | |
| history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) | |
| self.assertEqual(history.text, (text + "General Kenobi!")) | |
| self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6]))) | |
| self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1]))) | |
| history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) | |
| self.assertEqual(history.text, ((text + "General Kenobi!") + "You are a bold one!")) | |
| self.assertTrue(torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]))) | |
| self.assertTrue(torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1, 0, 0, 0]))) | |
| def test_text_history_complete(self): | |
| text = "Hello there!" | |
| tokens = torch.tensor([1, 2, 3]) | |
| history = TextHistory(text, tokens) | |
| history.complete() | |
| self.assertTrue(history.completed) | |
| self.assertFalse(history.truncated) | |
| history.complete(truncated=True) | |
| self.assertTrue(history.completed) | |
| self.assertTrue(history.truncated) | |
| def test_text_history_last_segment(self): | |
| text = "Hello there!" | |
| tokens = torch.tensor([1, 2, 3]) | |
| history = TextHistory(text, tokens) | |
| history.append_segment("General Kenobi!", torch.tensor([4, 5, 6])) | |
| history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) | |
| self.assertEqual(history.last_text_segment, "You are a bold one!") | |
| def test_text_history_split_query_response(self): | |
| text = "Hello there!" | |
| tokens = torch.tensor([1, 2, 3]) | |
| history = TextHistory(text, tokens) | |
| history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) | |
| history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]), system=True) | |
| query, response, mask = history.split_query_response_tokens() | |
| self.assertTrue(torch.equal(query, torch.tensor([1, 2, 3]))) | |
| self.assertTrue(torch.equal(response, torch.tensor([4, 5, 6, 7, 8, 9]))) | |
| self.assertTrue(torch.equal(mask, torch.tensor([1, 1, 1, 0, 0, 0]))) | |
| class TextEnvironmentTester(unittest.TestCase): | |
| def setUp(self): | |
| # model_id | |
| self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
| # get models and tokenizer | |
| self.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.model_id) | |
| self.gpt2_tokenizer = AutoTokenizer.from_pretrained(self.model_id) | |
| self.gpt2_tokenizer.pad_token = self.gpt2_tokenizer.eos_token | |
| def test_text_environment_setup(self): | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools=[DummyTool()], | |
| reward_fn=lambda x: torch.tensor(1), | |
| prompt="I am a prompt!\n", | |
| ) | |
| self.assertEqual(env.prompt, "I am a prompt!\n") | |
| self.assertListEqual(list(env.tools.keys()), ["DummyTool"]) | |
| self.assertIsInstance(env.tools["DummyTool"], DummyTool) | |
| self.assertEqual(env.reward_fn("Hello there!"), 1) | |
| def test_text_environment_generate(self): | |
| generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": self.gpt2_tokenizer.eos_token_id} | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools=[DummyTool()], | |
| reward_fn=lambda x: torch.tensor(1), | |
| prompt="I am a prompt!\n", | |
| generation_kwargs=generation_kwargs, | |
| ) | |
| input_texts = ["this is a test", "this is another, longer test"] | |
| model_inputs = [self.gpt2_tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts] | |
| generations_batched = env._generate_batched(model_inputs, batch_size=2) | |
| generations_batched = self.gpt2_tokenizer.batch_decode(generations_batched) | |
| generations_single = [env._generate_batched([inputs], batch_size=1)[0] for inputs in model_inputs] | |
| generations_single = self.gpt2_tokenizer.batch_decode(generations_single) | |
| self.assertEqual(generations_single, generations_batched) | |
| def test_text_environment_tool_call_parsing(self): | |
| string_valid = "Something something <request><Tool1>Hello there!<call>" | |
| string_invalid_request = "Something something <Tool1>Hello there!<call>" | |
| string_invalid_call = "Something something <request><Tool1>Hello there!" | |
| string_invalid_tool = "Something something <request>|Tool2|Hello there!<call>" | |
| string_invalid_random = "<>abcdefghijklm<>nopqrstuvwxyz<>" | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools=[DummyTool()], | |
| reward_fn=lambda x: torch.tensor(1), | |
| prompt="I am a prompt!\n", | |
| ) | |
| tool, response = env.parse_tool_call(string_valid) | |
| self.assertEqual(tool, "Tool1") | |
| self.assertEqual(response, "Hello there!") | |
| tool, response = env.parse_tool_call(string_invalid_request) | |
| self.assertIsNone(tool) | |
| self.assertIsNone(response) | |
| tool, response = env.parse_tool_call(string_invalid_call) | |
| self.assertIsNone(tool) | |
| self.assertIsNone(response) | |
| tool, response = env.parse_tool_call(string_invalid_tool) | |
| self.assertIsNone(tool) | |
| self.assertIsNone(response) | |
| tool, response = env.parse_tool_call(string_invalid_random) | |
| self.assertIsNone(tool) | |
| self.assertIsNone(response) | |
| def test_text_environment_tool_truncation(self): | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools={"dummy": lambda x: "a" * 1000}, | |
| reward_fn=lambda x: torch.tensor(1), | |
| prompt="I am a prompt!\n", | |
| ) | |
| env.max_tool_response = 100 | |
| history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) | |
| self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 100) | |
| env.max_tool_response = 500 | |
| history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) | |
| self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 500) | |
| env.max_tool_response = 1001 | |
| history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) | |
| self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000) | |
| env.max_tool_response = 2000 | |
| history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) | |
| self.assertEqual((len(history.last_text_segment) - len(env.response_token)), 1000) | |
| def test_text_environment_max_calls(self, mock_generate): | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools={"DummyTool": DummyTool()}, | |
| reward_fn=lambda x: [torch.tensor(1) for _ in x], | |
| prompt="I am a prompt!\n", | |
| ) | |
| env.max_turns = 1 | |
| _, _, _, _, histories = env.run(["test"]) | |
| self.assertEqual( | |
| histories[0].text, | |
| ("I am a prompt!\n" + "test") + (1 * "<request><DummyTool>test<call>test<response>"), | |
| ) | |
| env.max_turns = 2 | |
| _, _, _, _, histories = env.run(["test"]) | |
| self.assertEqual( | |
| histories[0].text, | |
| ("I am a prompt!\n" + "test") + (2 * "<request><DummyTool>test<call>test<response>"), | |
| ) | |
| env.max_turns = 4 | |
| _, _, _, _, histories = env.run(["test"]) | |
| self.assertEqual( | |
| histories[0].text, | |
| ("I am a prompt!\n" + "test") + (4 * "<request><DummyTool>test<call>test<response>"), | |
| ) | |
| def test_text_environment_compute_rewards(self): | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools={"DummyTool": DummyTool()}, | |
| reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], | |
| prompt="I am a prompt!\n", | |
| ) | |
| histories = [TextHistory("<request><DummyTool>test<call>", torch.tensor([1, 2, 3])) for _ in range(8)] | |
| histories = env.compute_reward(histories) | |
| for i in range(8): | |
| self.assertEqual(histories[i].reward, i) | |
| def test_text_environment_run(self, mock_generate): | |
| env = TextEnvironment( | |
| self.gpt2_model, | |
| self.gpt2_tokenizer, | |
| tools={"DummyTool": DummyTool()}, | |
| reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], | |
| prompt="I am a prompt!\n", | |
| max_turns=2, | |
| ) | |
| task_1 = "Hello there!" | |
| task_2 = "Hello there! General Kenobi!" | |
| query, response, response_mask, reward, histories = env.run([task_1, task_2]) | |
| self.assertEqual(len(query[0]), 8) | |
| self.assertEqual(len(query[1]), 12) | |
| self.assertEqual(len(response[0]), 14) | |
| self.assertEqual(len(response[1]), 14) | |
| self.assertEqual(response_mask[0].sum(), (2 * 3)) | |
| # mocked generate always adds 3 toknes | |
| self.assertEqual(response_mask[1].sum(), (2 * 3)) | |
| # mocked generate always adds 3 toknes | |
| self.assertEqual(reward[1], 1) | |
| self.assertEqual( | |
| histories[0].text, | |
| ("I am a prompt!\n" + "Hello there!") + (2 * "<request><DummyTool>test<call>test<response>"), | |
| ) | |
| self.assertEqual( | |
| histories[1].text, | |
| ("I am a prompt!\n" + "Hello there! General Kenobi!") | |
| + (2 * "<request><DummyTool>test<call>test<response>"), | |
| ) | |