Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import tempfile | |
| import unittest | |
| import torch | |
| from transformers import AutoModelForCausalLM | |
| from transformers.testing_utils import ( | |
| require_peft, | |
| require_torch_gpu_if_bnb_not_multi_backend_enabled, | |
| ) | |
| from transformers.utils import is_peft_available | |
| from trl import AutoModelForCausalLMWithValueHead | |
| if is_peft_available(): | |
| from peft import LoraConfig, get_peft_model | |
| class PeftModelTester(unittest.TestCase): | |
| def setUp(self): | |
| self.causal_lm_model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" | |
| self.lora_config = LoraConfig( | |
| r=16, | |
| lora_alpha=32, | |
| lora_dropout=0.05, | |
| bias="none", | |
| task_type="CAUSAL_LM", | |
| ) | |
| def test_create_peft_model(self): | |
| r""" | |
| Simply creates a peft model and checks that it can be loaded. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| _ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
| def test_peft_requires_grad(self): | |
| r""" | |
| Check that the value head of the returned model has requires_grad=True. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
| # Check that the value head has requires_grad=True | |
| self.assertTrue(model.v_head.summary.weight.requires_grad) | |
| def test_check_peft_model_nb_trainable_params(self): | |
| r""" | |
| Check that the number of trainable parameters is correct. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |
| # Check that the number of trainable param for the non-peft model is correct | |
| non_peft_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id) | |
| nb_trainable_params = sum(p.numel() for p in non_peft_model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 2428641) | |
| def test_create_peft_model_from_config(self): | |
| r""" | |
| Simply creates a peft model and checks that it can be loaded. | |
| """ | |
| trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( | |
| self.causal_lm_model_id, peft_config=self.lora_config | |
| ) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |
| def test_create_bnb_peft_model_from_config(self): | |
| r""" | |
| Simply creates a peft model and checks that it can be loaded. | |
| """ | |
| from bitsandbytes.nn import Linear8bitLt | |
| trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( | |
| self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True | |
| ) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |
| self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained( | |
| self.causal_lm_model_id, load_in_8bit=True, device_map="auto" | |
| ) | |
| trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |
| self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) | |
| def test_save_pretrained_peft(self): | |
| r""" | |
| Check that the model can be saved and loaded properly. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| model.save_pretrained(tmp_dir) | |
| # check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory | |
| self.assertTrue( | |
| os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), | |
| f"{tmp_dir}/adapter_model.safetensors does not exist", | |
| ) | |
| self.assertTrue( | |
| os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" | |
| ) | |
| # check also for `pytorch_model.bin` and make sure it only contains `v_head` weights | |
| self.assertTrue( | |
| os.path.exists(f"{tmp_dir}/pytorch_model.bin"), f"{tmp_dir}/pytorch_model.bin does not exist" | |
| ) | |
| # check that only keys that starts with `v_head` are in the dict | |
| maybe_v_head = torch.load(f"{tmp_dir}/pytorch_model.bin", weights_only=True) | |
| self.assertTrue( | |
| all(k.startswith("v_head") for k in maybe_v_head.keys()), | |
| f"keys in {tmp_dir}/pytorch_model.bin do not start with `v_head`", | |
| ) | |
| model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) | |
| # check all the weights are the same | |
| for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): | |
| self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") | |
| def test_load_pretrained_peft(self): | |
| r""" | |
| Check that the model saved with peft class interface can be loaded properly. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| pretrained_model.save_pretrained(tmp_dir) | |
| model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) | |
| # check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory | |
| self.assertTrue( | |
| os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), | |
| f"{tmp_dir}/adapter_model.safetensors does not exist", | |
| ) | |
| self.assertTrue( | |
| os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" | |
| ) | |
| # check all the weights are the same | |
| for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): | |
| if p1[0] not in ["v_head.summary.weight", "v_head.summary.bias"]: | |
| self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") | |
| def test_continue_training_peft_model(self): | |
| r""" | |
| Load peft and checks that it can continue training. | |
| """ | |
| causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) | |
| pretrained_model = get_peft_model(causal_lm_model, self.lora_config) | |
| with tempfile.TemporaryDirectory() as tmp_dir: | |
| pretrained_model.save_pretrained(tmp_dir) | |
| # set is_trainable to True | |
| model = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir, is_trainable=True) | |
| # Check that the number of trainable parameters is correct | |
| nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
| self.assertEqual(nb_trainable_params, 905) | |