Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from datasets import load_dataset | |
| from huggingface_hub import ModelCard | |
| from transformers import HfArgumentParser | |
| class ScriptArguments: | |
| r""" | |
| Arguments for the script. | |
| Args: | |
| push_to_hub (`bool`, *optional*, defaults to `False`): | |
| Whether to push the dataset to the Hugging Face Hub. | |
| repo_id (`str`, *optional*, defaults to `"trl-lib/prm800k"`): | |
| Hugging Face repository ID to push the dataset to. | |
| dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
| Number of workers to use for dataset processing. | |
| """ | |
| push_to_hub: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
| ) | |
| repo_id: str = field( | |
| default="trl-lib/prm800k", | |
| metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
| ) | |
| dataset_num_proc: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Number of workers to use for dataset processing."}, | |
| ) | |
| def process_example(example): | |
| outputs = [] | |
| prompt = example["question"]["problem"] | |
| # Iterate through each step | |
| previous_completions = [] | |
| previous_labels = [] | |
| for step in example["label"]["steps"]: | |
| if step["completions"] is None and step["human_completion"] is None and step["chosen_completion"] is None: | |
| # happens sometimes | |
| break | |
| # Loop through completions | |
| for completion_idx, completion in enumerate(step["completions"]): | |
| # For every completion that are not chosen, we are in a terminal state, so we can add it to the list of outputs. | |
| if completion_idx != step["chosen_completion"]: | |
| content = completion["text"] | |
| completions = previous_completions[:] + [content] | |
| label = completion["rating"] == 1 | |
| labels = previous_labels[:] + [label] | |
| outputs.append({"prompt": prompt, "completions": completions, "labels": labels}) | |
| # Now, exapand the previous completions and labels | |
| if step["chosen_completion"] is not None: | |
| chosen_completion = step["completions"][step["chosen_completion"]] | |
| label = chosen_completion["rating"] == 1 | |
| elif step["human_completion"] is not None: | |
| chosen_completion = step["human_completion"] | |
| label = True | |
| else: | |
| break | |
| content = chosen_completion["text"] | |
| previous_completions.append(content) | |
| previous_labels.append(label) | |
| # Last step: we are in a terminal state, so we can add it to the list of outputs | |
| outputs.append({"prompt": prompt, "completions": previous_completions, "labels": previous_labels}) | |
| return outputs | |
| def process_batch(examples): | |
| outputs = [] | |
| batch_size = len(examples["label"]) | |
| for idx in range(batch_size): | |
| example = {k: v[idx] for k, v in examples.items()} | |
| outputs.extend(process_example(example)) | |
| # list of dict to dict of list | |
| outputs = {k: [v[k] for v in outputs] for k in outputs[0]} | |
| return outputs | |
| model_card = ModelCard(""" | |
| --- | |
| tags: [trl] | |
| --- | |
| # PRM800K Dataset | |
| ## Summary | |
| The PRM800K dataset is a processed version of [OpenAI's PRM800K](https://github.com/openai/prm800k), designed to train models using the [TRL library](https://github.com/huggingface/trl) for stepwise supervision tasks. It contains 800,000 step-level correctness labels for model-generated solutions to problems from the MATH dataset. This dataset enables models to learn and verify each step of a solution, enhancing their reasoning capabilities. | |
| ## Data Structure | |
| - **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard) | |
| - **Type**: [Stepwise supervision](https://huggingface.co/docs/trl/main/dataset_formats#stepwise-supervision) | |
| Columns: | |
| - `"prompt"`: The problem statement. | |
| - `"completions"`: A list of reasoning steps generated to solve the problem. | |
| - `"labels"`: A list of booleans or floats indicating the correctness of each corresponding reasoning step. | |
| This structure allows models to learn the correctness of each step in a solution, facilitating improved reasoning and problem-solving abilities. | |
| ## Generation script | |
| The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/prm800k.py). | |
| """) | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser(ScriptArguments) | |
| script_args = parser.parse_args_into_dataclasses()[0] | |
| data_files = { | |
| "train": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_train.jsonl", | |
| "test": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_test.jsonl", | |
| } | |
| dataset = load_dataset("json", data_files=data_files) | |
| dataset = dataset.map( | |
| process_batch, | |
| batched=True, | |
| batch_size=10, | |
| remove_columns=[ | |
| "labeler", | |
| "timestamp", | |
| "generation", | |
| "is_quality_control_question", | |
| "is_initial_screening_question", | |
| "question", | |
| "label", | |
| ], | |
| num_proc=script_args.dataset_num_proc, | |
| ) | |
| if script_args.push_to_hub: | |
| dataset.push_to_hub(script_args.repo_id) | |
| model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |