Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Run the CPO training script with the following command with some example arguments. | |
| In general, the optimal configuration for CPO will be similar to that of DPO: | |
| # regular: | |
| python examples/scripts/cpo.py \ | |
| --dataset_name trl-lib/ultrafeedback_binarized \ | |
| --model_name_or_path=gpt2 \ | |
| --per_device_train_batch_size 4 \ | |
| --max_steps 1000 \ | |
| --learning_rate 8e-6 \ | |
| --gradient_accumulation_steps 1 \ | |
| --logging_steps 10 \ | |
| --eval_steps 500 \ | |
| --output_dir="gpt2-aligned-cpo" \ | |
| --warmup_steps 150 \ | |
| --report_to wandb \ | |
| --bf16 \ | |
| --logging_first_step \ | |
| --no_remove_unused_columns | |
| # peft: | |
| python examples/scripts/cpo.py \ | |
| --dataset_name trl-lib/ultrafeedback_binarized \ | |
| --model_name_or_path=gpt2 \ | |
| --per_device_train_batch_size 4 \ | |
| --max_steps 1000 \ | |
| --learning_rate 8e-5 \ | |
| --gradient_accumulation_steps 1 \ | |
| --logging_steps 10 \ | |
| --eval_steps 500 \ | |
| --output_dir="gpt2-lora-aligned-cpo" \ | |
| --optim rmsprop \ | |
| --warmup_steps 150 \ | |
| --report_to wandb \ | |
| --bf16 \ | |
| --logging_first_step \ | |
| --no_remove_unused_columns \ | |
| --use_peft \ | |
| --lora_r=16 \ | |
| --lora_alpha=16 | |
| """ | |
| from datasets import load_dataset | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser | |
| from trl import CPOConfig, CPOTrainer, ModelConfig, ScriptArguments, get_peft_config | |
| from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser((ScriptArguments, CPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
| ################ | |
| # Model & Tokenizer | |
| ################ | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| if tokenizer.chat_template is None: | |
| tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
| ################ | |
| # Training | |
| ################ | |
| trainer = CPOTrainer( | |
| model, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| # train and save the model | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |