Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Usage: | |
| python examples/scripts/dpo_online.py \ | |
| --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \ | |
| --reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \ | |
| --dataset_name trl-lib/tldr \ | |
| --learning_rate 5.0e-7 \ | |
| --output_dir pythia-1b-tldr-online-dpo \ | |
| --per_device_train_batch_size 8 \ | |
| --gradient_accumulation_steps 16 \ | |
| --warmup_ratio 0.1 \ | |
| --missing_eos_penalty 1.0 | |
| With LoRA: | |
| python examples/scripts/dpo_online.py \ | |
| --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \ | |
| --reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \ | |
| --dataset_name trl-lib/tldr \ | |
| --learning_rate 5.0e-6 \ | |
| --output_dir pythia-1b-tldr-online-dpo \ | |
| --per_device_train_batch_size 16 \ | |
| --gradient_accumulation_steps 8 \ | |
| --warmup_ratio 0.1 \ | |
| --missing_eos_penalty 1.0 \ | |
| --use_peft | |
| """ | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig | |
| from trl import ( | |
| HfPairwiseJudge, | |
| LogCompletionsCallback, | |
| ModelConfig, | |
| OnlineDPOConfig, | |
| OnlineDPOTrainer, | |
| OpenAIPairwiseJudge, | |
| PairRMJudge, | |
| ScriptArguments, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
| JUDGES = {"pair_rm": PairRMJudge, "openai": OpenAIPairwiseJudge, "hf": HfPairwiseJudge} | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, OnlineDPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| training_args.gradient_checkpointing_kwargs = {"use_reentrant": True} | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| use_cache=False if training_args.gradient_checkpointing else True, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs | |
| ) | |
| if training_args.reward_model_path is not None: | |
| reward_model = AutoModelForSequenceClassification.from_pretrained( | |
| training_args.reward_model_path, | |
| num_labels=1, | |
| trust_remote_code=model_args.trust_remote_code, | |
| **model_kwargs, | |
| ) | |
| reward_tokenizer = AutoTokenizer.from_pretrained( | |
| training_args.reward_model_path, | |
| trust_remote_code=model_args.trust_remote_code, | |
| truncation=True, | |
| truncation_side="left", # since we judge the completion, truncating left is more appropriate | |
| ) | |
| else: | |
| reward_model = None | |
| reward_tokenizer = None | |
| if training_args.judge is not None: | |
| judge_cls = JUDGES[training_args.judge] | |
| judge = judge_cls() | |
| else: | |
| judge = None | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| padding_side="left", | |
| trust_remote_code=model_args.trust_remote_code, | |
| **model_kwargs, | |
| ) | |
| if tokenizer.chat_template is None: | |
| tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| trainer = OnlineDPOTrainer( | |
| model=model, | |
| reward_model=reward_model, | |
| judge=judge, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| reward_processing_class=reward_tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| if training_args.eval_strategy != "no": | |
| generation_config = GenerationConfig( | |
| max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature | |
| ) | |
| completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8) | |
| trainer.add_callback(completions_callback) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |