Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Without dataset streaming: | |
| ``` | |
| accelerate launch examples/scripts/dpo_vlm.py \ | |
| --dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
| --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
| --per_device_train_batch_size 2 \ | |
| --gradient_accumulation_steps 32 \ | |
| --dataset_num_proc 32 \ | |
| --output_dir dpo_idefics_rlaif-v \ | |
| --bf16 \ | |
| --torch_dtype bfloat16 \ | |
| --gradient_checkpointing \ | |
| --use_peft \ | |
| --lora_target_modules=all-linear \ | |
| --report_to wandb | |
| ``` | |
| With dataset streaming: | |
| ``` | |
| accelerate launch examples/scripts/dpo_vlm.py \ | |
| --dataset_name HuggingFaceH4/rlaif-v_formatted \ | |
| --dataset_streaming \ | |
| --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ | |
| --per_device_train_batch_size 2 \ | |
| --max_steps 100 \ | |
| --gradient_accumulation_steps 32 \ | |
| --dataset_num_proc 32 \ | |
| --output_dir dpo_idefics_rlaif-v \ | |
| --bf16 \ | |
| --torch_dtype bfloat16 \ | |
| --gradient_checkpointing \ | |
| --use_peft \ | |
| --lora_target_modules=all-linear \ | |
| --report_to wandb | |
| ``` | |
| """ | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoModelForVision2Seq, AutoProcessor | |
| from trl import ( | |
| DPOConfig, | |
| DPOTrainer, | |
| ModelConfig, | |
| ScriptArguments, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| ################ | |
| # Model & Tokenizer | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| model = AutoModelForVision2Seq.from_pretrained( | |
| model_args.model_name_or_path, | |
| trust_remote_code=model_args.trust_remote_code, | |
| **model_kwargs, | |
| ) | |
| peft_config = get_peft_config(model_args) | |
| if peft_config is None: | |
| ref_model = AutoModelForVision2Seq.from_pretrained( | |
| model_args.model_name_or_path, | |
| trust_remote_code=model_args.trust_remote_code, | |
| **model_kwargs, | |
| ) | |
| else: | |
| ref_model = None | |
| processor = AutoProcessor.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, do_image_splitting=False | |
| ) | |
| tokenizer = processor.tokenizer | |
| # Set up the chat template | |
| if model.config.model_type == "idefics2": | |
| pass # the processor already has a valid chat template | |
| elif model.config.model_type == "paligemma": | |
| processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}<|im_start|>{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] if item['type'] == 'text' %}{{ item['text'] }}<|im_end|>{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" | |
| elif model.config.model_type == "llava": | |
| processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| if script_args.ignore_bias_buffers: | |
| # torch distributed hack | |
| model._ddp_params_and_buffers_to_ignore = [ | |
| name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool | |
| ] | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset( | |
| script_args.dataset_name, | |
| name=script_args.dataset_config, | |
| streaming=script_args.dataset_streaming, | |
| ) | |
| ################ | |
| # Training | |
| ################ | |
| trainer = DPOTrainer( | |
| model, | |
| ref_model, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=processor, | |
| peft_config=peft_config, | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |