Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| # Full training: | |
| python examples/scripts/gkd.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
| --teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ | |
| --dataset_name trl-lib/chatbot_arena_completions \ | |
| --learning_rate 2e-5 \ | |
| --per_device_train_batch_size 4 \ | |
| --gradient_accumulation_steps 8 \ | |
| --output_dir gkd-model \ | |
| --logging_steps 10 \ | |
| --num_train_epochs 1 \ | |
| --push_to_hub \ | |
| --gradient_checkpointing | |
| # LoRA: | |
| python examples/scripts/gkd.py \ | |
| --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ | |
| --teacher_model_name_or_path Qwen/Qwen2-1.5B-Instruct \ | |
| --dataset_name trl-lib/chatbot_arena_completions \ | |
| --learning_rate 2e-4 \ | |
| --per_device_train_batch_size 4 \ | |
| --gradient_accumulation_steps 8 \ | |
| --output_dir gkd-model \ | |
| --logging_steps 10 \ | |
| --num_train_epochs 1 \ | |
| --push_to_hub \ | |
| --gradient_checkpointing \ | |
| --use_peft \ | |
| --lora_r 64 \ | |
| --lora_alpha 16 | |
| """ | |
| from datasets import load_dataset | |
| from transformers import AutoTokenizer, GenerationConfig | |
| from trl import ( | |
| GKDConfig, | |
| GKDTrainer, | |
| LogCompletionsCallback, | |
| ModelConfig, | |
| ScriptArguments, | |
| TrlParser, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| if __name__ == "__main__": | |
| parser = TrlParser((ScriptArguments, GKDConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| ################ | |
| # Model & Tokenizer | |
| ################ | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| trust_remote_code=model_args.trust_remote_code, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=model_args.torch_dtype, | |
| use_cache=False if training_args.gradient_checkpointing else True, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| training_args.model_init_kwargs = model_kwargs | |
| teacher_model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| trust_remote_code=model_args.trust_remote_code, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=model_args.torch_dtype, | |
| use_cache=True, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| training_args.teacher_model_init_kwargs = teacher_model_kwargs | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| revision=model_args.model_revision, | |
| trust_remote_code=model_args.trust_remote_code, | |
| padding_side="left", | |
| ) | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| ################ | |
| # Training | |
| ################ | |
| trainer = GKDTrainer( | |
| model=model_args.model_name_or_path, | |
| teacher_model=training_args.teacher_model_name_or_path, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| if training_args.eval_strategy != "no": | |
| generation_config = GenerationConfig( | |
| max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature | |
| ) | |
| completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8) | |
| trainer.add_callback(completions_callback) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |