Spaces:
Running
Running
File size: 1,430 Bytes
ef1f936 167211e ef1f936 1f2295d ef1f936 167211e ed7741a 167211e ed7741a 167211e ed7741a 167211e 3dc83fd 167211e 3dc83fd 167211e ed7741a 167211e ed7741a 167211e ed7741a 167211e ed7741a 167211e ed7741a 167211e 1f2295d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
title: Music Classification with MIT AST
emoji: 🎵
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.9.1
app_file: app.py
pinned: false
license: mit
---
# Music Classification with MIT's AST Model 🎵
This Hugging Face Space demonstrates audio classification using MIT's Audio Spectrogram Transformer (AST) model. The model can identify various types of music, instruments, and sounds in audio files.
## Features
- Simple, user-friendly interface
- Support for multiple audio formats (WAV, MP3, OGG, FLAC)
- Top-5 predictions with confidence scores
- Real-time processing
## How to Use
1. Click the "Upload Music File" button or drag and drop an audio file
2. Wait a few seconds for the model to process the audio
3. View the classification results with confidence scores
## Model Details
This app uses the `MIT/ast-finetuned-audioset-10-10-0.4593` model, which is trained on AudioSet and can recognize a wide variety of sounds and music styles. The model converts audio into spectrograms and uses a transformer architecture to classify the audio content.
## Technical Notes
- The model processes audio at 16kHz
- Results show top 5 predictions with confidence scores
- Processing is done on Hugging Face's infrastructure
- No local installation required
## Credits
- Model: [MIT AST](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593)
- Interface: Gradio
- Deployment: Hugging Face Spaces |