Spaces:
Sleeping
Sleeping
| from fastapi import APIRouter, UploadFile, File | |
| from fastapi.responses import JSONResponse | |
| import openai | |
| import io | |
| import os | |
| from pypdf import PdfReader | |
| from langchain.embeddings.openai import OpenAIEmbeddings | |
| from langchain.vectorstores import Qdrant | |
| from langchain.schema import Document | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.llms import OpenAI | |
| from db import vector_store | |
| router = APIRouter() | |
| _db = vector_store.get_instance() | |
| _chain = load_qa_chain(OpenAI(temperature=0), chain_type="map_reduce") | |
| async def index_doc(file: UploadFile = File(...)): | |
| async for doc in generate_documents(file): | |
| _db.add_documents([doc]) | |
| #todo return something sensible | |
| return JSONResponse(status_code=200, content={}) | |
| async def search(query: str): | |
| print(query) | |
| docs = _db.similarity_search(query=query) | |
| print(docs) | |
| answer = _chain.run(input_documents=docs, question=query) | |
| return JSONResponse(status_code=200, content={"answer": answer}) | |
| async def generate_documents(file: UploadFile): | |
| num=0 | |
| async for txt in convert_documents(file): | |
| num += 1 | |
| document = Document(page_content=txt,metadata={"page": num}) | |
| yield document | |
| async def convert_documents(file: UploadFile): | |
| #parse pdf document | |
| if file.content_type == 'application/pdf': | |
| content = await file.read() | |
| pdf_reader = PdfReader(io.BytesIO(content)) | |
| try: | |
| for page in pdf_reader.pages: | |
| yield page.extract_text() | |
| except Exception as e: | |
| print(f"Exception {e}") | |
| else: | |
| return |