Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from keras.models import load_model
|
| 5 |
+
from keras.preprocessing.image import load_img, img_to_array
|
| 6 |
+
from keras.applications.vgg19 import preprocess_input
|
| 7 |
+
import numpy as np
|
| 8 |
+
from transformers import pipeline
|
| 9 |
+
|
| 10 |
+
# Load the Keras model
|
| 11 |
+
model = load_model("Tumour_model(V19).h5")
|
| 12 |
+
|
| 13 |
+
# Define the class reference dictionary
|
| 14 |
+
ref = {0: 'Glioma', 1: 'Meningioma', 2: 'No Tumor', 3: 'Pituitary'}
|
| 15 |
+
|
| 16 |
+
# Define function to preprocess the image
|
| 17 |
+
def preprocess_image(image_path):
|
| 18 |
+
img = load_img(image_path, target_size=(256, 256))
|
| 19 |
+
img_array = img_to_array(img)
|
| 20 |
+
img_array = preprocess_input(img_array)
|
| 21 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 22 |
+
return img_array
|
| 23 |
+
|
| 24 |
+
# Streamlit app
|
| 25 |
+
def main():
|
| 26 |
+
st.title('Brain Tumor Classification')
|
| 27 |
+
|
| 28 |
+
# Upload image
|
| 29 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 30 |
+
|
| 31 |
+
if uploaded_file is not None:
|
| 32 |
+
# Preprocess the image
|
| 33 |
+
image = preprocess_image(uploaded_file)
|
| 34 |
+
|
| 35 |
+
# Make prediction
|
| 36 |
+
predictions = model.predict(image)
|
| 37 |
+
predicted_class = np.argmax(predictions)
|
| 38 |
+
predicted_class_name = ref[predicted_class]
|
| 39 |
+
probabilities = predictions.tolist()[0]
|
| 40 |
+
|
| 41 |
+
# Display prediction
|
| 42 |
+
st.success(f"Predicted class: {predicted_class_name}")
|
| 43 |
+
st.write("Probabilities:")
|
| 44 |
+
for i, prob in enumerate(probabilities):
|
| 45 |
+
st.write(f"{ref[i]}: {prob}")
|
| 46 |
+
|
| 47 |
+
# Hugging Face component
|
| 48 |
+
st.title("Hugging Face Model")
|
| 49 |
+
model_name = "mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es"
|
| 50 |
+
st.huggingface_component(model_name)
|
| 51 |
+
|
| 52 |
+
if __name__ == '__main__':
|
| 53 |
+
main()
|