VideoModelStudio
/
docs
/finetrainers-src-codebase
/finetrainers
/models
/flux
/base_specification.py
| import functools | |
| import os | |
| from typing import Any, Dict, List, Optional, Tuple | |
| import torch | |
| from accelerate import init_empty_weights | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel | |
| from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution | |
| from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
| import finetrainers.functional as FF | |
| from finetrainers.data import ImageArtifact | |
| from finetrainers.logging import get_logger | |
| from finetrainers.models.modeling_utils import ModelSpecification | |
| from finetrainers.processors import CLIPPooledProcessor, ProcessorMixin, T5Processor | |
| from finetrainers.typing import ArtifactType, SchedulerType | |
| from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function | |
| logger = get_logger() | |
| class FluxLatentEncodeProcessor(ProcessorMixin): | |
| r""" | |
| Processor to encode image/video into latents using the Flux VAE. | |
| Args: | |
| output_names (`List[str]`): | |
| The names of the outputs that the processor returns. The outputs are in the following order: | |
| - latents: The latents of the input image/video. | |
| """ | |
| def __init__(self, output_names: List[str]): | |
| super().__init__() | |
| self.output_names = output_names | |
| assert len(self.output_names) == 1 | |
| def forward( | |
| self, | |
| vae: AutoencoderKL, | |
| image: Optional[torch.Tensor] = None, | |
| video: Optional[torch.Tensor] = None, | |
| generator: Optional[torch.Generator] = None, | |
| compute_posterior: bool = True, | |
| ) -> Dict[str, torch.Tensor]: | |
| device = vae.device | |
| dtype = vae.dtype | |
| if video is not None: | |
| # TODO(aryan): perhaps better would be to flatten(0, 1), but need to account for reshaping sigmas accordingly | |
| image = video[:, 0] # [B, F, C, H, W] -> [B, 1, C, H, W] | |
| assert image.ndim == 4, f"Expected 4D tensor, got {image.ndim}D tensor" | |
| image = image.to(device=device, dtype=vae.dtype) | |
| if compute_posterior: | |
| latents = vae.encode(image).latent_dist.sample(generator=generator) | |
| latents = latents.to(dtype=dtype) | |
| else: | |
| if vae.use_slicing and image.shape[0] > 1: | |
| encoded_slices = [vae._encode(x_slice) for x_slice in image.split(1)] | |
| moments = torch.cat(encoded_slices) | |
| else: | |
| moments = vae._encode(image) | |
| latents = moments.to(dtype=dtype) | |
| return {self.output_names[0]: latents} | |
| class FluxModelSpecification(ModelSpecification): | |
| def __init__( | |
| self, | |
| pretrained_model_name_or_path: str = "black-forest-labs/FLUX.1-dev", | |
| tokenizer_id: Optional[str] = None, | |
| tokenizer_2_id: Optional[str] = None, | |
| text_encoder_id: Optional[str] = None, | |
| text_encoder_2_id: Optional[str] = None, | |
| transformer_id: Optional[str] = None, | |
| vae_id: Optional[str] = None, | |
| text_encoder_dtype: torch.dtype = torch.bfloat16, | |
| transformer_dtype: torch.dtype = torch.bfloat16, | |
| vae_dtype: torch.dtype = torch.bfloat16, | |
| revision: Optional[str] = None, | |
| cache_dir: Optional[str] = None, | |
| condition_model_processors: List[ProcessorMixin] = None, | |
| latent_model_processors: List[ProcessorMixin] = None, | |
| **kwargs, | |
| ) -> None: | |
| super().__init__( | |
| pretrained_model_name_or_path=pretrained_model_name_or_path, | |
| tokenizer_id=tokenizer_id, | |
| tokenizer_2_id=tokenizer_2_id, | |
| text_encoder_id=text_encoder_id, | |
| text_encoder_2_id=text_encoder_2_id, | |
| transformer_id=transformer_id, | |
| vae_id=vae_id, | |
| text_encoder_dtype=text_encoder_dtype, | |
| transformer_dtype=transformer_dtype, | |
| vae_dtype=vae_dtype, | |
| revision=revision, | |
| cache_dir=cache_dir, | |
| ) | |
| if condition_model_processors is None: | |
| condition_model_processors = [ | |
| CLIPPooledProcessor(["pooled_projections"]), | |
| T5Processor( | |
| ["encoder_hidden_states", "prompt_attention_mask"], | |
| input_names={"tokenizer_2": "tokenizer", "text_encoder_2": "text_encoder"}, | |
| ), | |
| ] | |
| if latent_model_processors is None: | |
| latent_model_processors = [FluxLatentEncodeProcessor(["latents"])] | |
| self.condition_model_processors = condition_model_processors | |
| self.latent_model_processors = latent_model_processors | |
| def _resolution_dim_keys(self): | |
| return {"latents": (2, 3)} | |
| def load_condition_models(self) -> Dict[str, torch.nn.Module]: | |
| common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir} | |
| if self.tokenizer_id is not None: | |
| tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs) | |
| else: | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs | |
| ) | |
| if self.tokenizer_2_id is not None: | |
| tokenizer_2 = AutoTokenizer.from_pretrained(self.tokenizer_2_id, **common_kwargs) | |
| else: | |
| tokenizer_2 = AutoTokenizer.from_pretrained( | |
| self.pretrained_model_name_or_path, subfolder="tokenizer_2", **common_kwargs | |
| ) | |
| if self.text_encoder_id is not None: | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs | |
| ) | |
| else: | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| self.pretrained_model_name_or_path, | |
| subfolder="text_encoder", | |
| torch_dtype=self.text_encoder_dtype, | |
| **common_kwargs, | |
| ) | |
| if self.text_encoder_2_id is not None: | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| self.text_encoder_2_id, torch_dtype=self.text_encoder_2_dtype, **common_kwargs | |
| ) | |
| else: | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| self.pretrained_model_name_or_path, | |
| subfolder="text_encoder_2", | |
| torch_dtype=self.text_encoder_2_dtype, | |
| **common_kwargs, | |
| ) | |
| return { | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| } | |
| def load_latent_models(self) -> Dict[str, torch.nn.Module]: | |
| common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir} | |
| if self.vae_id is not None: | |
| vae = AutoencoderKL.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs) | |
| else: | |
| vae = AutoencoderKL.from_pretrained( | |
| self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs | |
| ) | |
| return {"vae": vae} | |
| def load_diffusion_models(self) -> Dict[str, torch.nn.Module]: | |
| common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir} | |
| if self.transformer_id is not None: | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs | |
| ) | |
| else: | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| self.pretrained_model_name_or_path, | |
| subfolder="transformer", | |
| torch_dtype=self.transformer_dtype, | |
| **common_kwargs, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return {"transformer": transformer, "scheduler": scheduler} | |
| def load_pipeline( | |
| self, | |
| tokenizer: Optional[AutoTokenizer] = None, | |
| tokenizer_2: Optional[CLIPTokenizer] = None, | |
| text_encoder: Optional[CLIPTextModel] = None, | |
| text_encoder_2: Optional[T5EncoderModel] = None, | |
| transformer: Optional[FluxTransformer2DModel] = None, | |
| vae: Optional[AutoencoderKL] = None, | |
| scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None, | |
| enable_slicing: bool = False, | |
| enable_tiling: bool = False, | |
| enable_model_cpu_offload: bool = False, | |
| training: bool = False, | |
| **kwargs, | |
| ) -> FluxPipeline: | |
| components = { | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "transformer": transformer, | |
| "vae": vae, | |
| # Load the scheduler based on Flux's config instead of using the default initialization being used for training | |
| # "scheduler": scheduler, | |
| } | |
| components = get_non_null_items(components) | |
| pipe = FluxPipeline.from_pretrained( | |
| self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir | |
| ) | |
| pipe.text_encoder.to(self.text_encoder_dtype) | |
| pipe.text_encoder_2.to(self.text_encoder_2_dtype) | |
| pipe.vae.to(self.vae_dtype) | |
| _enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling) | |
| if not training: | |
| pipe.transformer.to(self.transformer_dtype) | |
| if enable_model_cpu_offload: | |
| pipe.enable_model_cpu_offload() | |
| return pipe | |
| def prepare_conditions( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: T5EncoderModel, | |
| caption: str, | |
| max_sequence_length: int = 512, | |
| **kwargs, | |
| ) -> Dict[str, Any]: | |
| conditions = { | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "caption": caption, | |
| "max_sequence_length": max_sequence_length, | |
| **kwargs, | |
| } | |
| input_keys = set(conditions.keys()) | |
| conditions = super().prepare_conditions(**conditions) | |
| conditions = {k: v for k, v in conditions.items() if k not in input_keys} | |
| return conditions | |
| def prepare_latents( | |
| self, | |
| vae: AutoencoderKL, | |
| image: Optional[torch.Tensor] = None, | |
| video: Optional[torch.Tensor] = None, | |
| generator: Optional[torch.Generator] = None, | |
| compute_posterior: bool = True, | |
| **kwargs, | |
| ) -> Dict[str, torch.Tensor]: | |
| conditions = { | |
| "vae": vae, | |
| "image": image, | |
| "video": video, | |
| "generator": generator, | |
| "compute_posterior": compute_posterior, | |
| **kwargs, | |
| } | |
| input_keys = set(conditions.keys()) | |
| conditions = super().prepare_latents(**conditions) | |
| conditions = {k: v for k, v in conditions.items() if k not in input_keys} | |
| return conditions | |
| def forward( | |
| self, | |
| transformer: FluxTransformer2DModel, | |
| condition_model_conditions: Dict[str, torch.Tensor], | |
| latent_model_conditions: Dict[str, torch.Tensor], | |
| sigmas: torch.Tensor, | |
| generator: Optional[torch.Generator] = None, | |
| compute_posterior: bool = True, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, ...]: | |
| if compute_posterior: | |
| latents = latent_model_conditions.pop("latents") | |
| else: | |
| posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents")) | |
| latents = posterior.sample(generator=generator) | |
| del posterior | |
| if getattr(self.vae_config, "shift_factor", None) is not None: | |
| latents = (latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor | |
| else: | |
| latents = latents * self.vae_config.scaling_factor | |
| noise = torch.zeros_like(latents).normal_(generator=generator) | |
| timesteps = (sigmas.flatten() * 1000.0).long() | |
| img_ids = FluxPipeline._prepare_latent_image_ids( | |
| latents.size(0), latents.size(2) // 2, latents.size(3) // 2, latents.device, latents.dtype | |
| ) | |
| text_ids = latents.new_zeros(condition_model_conditions["encoder_hidden_states"].shape[1], 3) | |
| if self.transformer_config.guidance_embeds: | |
| guidance_scale = 1.0 | |
| guidance = latents.new_full((1,), guidance_scale).expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| noisy_latents = FF.flow_match_xt(latents, noise, sigmas) | |
| noisy_latents = FluxPipeline._pack_latents(noisy_latents, *latents.shape) | |
| latent_model_conditions["hidden_states"] = noisy_latents.to(latents) | |
| condition_model_conditions.pop("prompt_attention_mask", None) | |
| spatial_compression_ratio = 2 ** len(self.vae_config.block_out_channels) | |
| pred = transformer( | |
| **latent_model_conditions, | |
| **condition_model_conditions, | |
| timestep=timesteps / 1000.0, | |
| guidance=guidance, | |
| img_ids=img_ids, | |
| txt_ids=text_ids, | |
| return_dict=False, | |
| )[0] | |
| pred = FluxPipeline._unpack_latents( | |
| pred, | |
| latents.size(2) * spatial_compression_ratio, | |
| latents.size(3) * spatial_compression_ratio, | |
| spatial_compression_ratio, | |
| ) | |
| target = FF.flow_match_target(noise, latents) | |
| return pred, target, sigmas | |
| def validation( | |
| self, | |
| pipeline: FluxPipeline, | |
| prompt: str, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 3.5, | |
| generator: Optional[torch.Generator] = None, | |
| **kwargs, | |
| ) -> List[ArtifactType]: | |
| generation_kwargs = { | |
| "prompt": prompt, | |
| "height": height, | |
| "width": width, | |
| "num_inference_steps": num_inference_steps, | |
| "guidance_scale": guidance_scale, | |
| "generator": generator, | |
| "return_dict": True, | |
| "output_type": "pil", | |
| } | |
| generation_kwargs = get_non_null_items(generation_kwargs) | |
| image = pipeline(**generation_kwargs).images[0] | |
| return [ImageArtifact(value=image)] | |
| def _save_lora_weights( | |
| self, | |
| directory: str, | |
| transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None, | |
| scheduler: Optional[SchedulerType] = None, | |
| metadata: Optional[Dict[str, str]] = None, | |
| *args, | |
| **kwargs, | |
| ) -> None: | |
| # TODO(aryan): this needs refactoring | |
| if transformer_state_dict is not None: | |
| FluxPipeline.save_lora_weights( | |
| directory, | |
| transformer_state_dict, | |
| save_function=functools.partial(safetensors_torch_save_function, metadata=metadata), | |
| safe_serialization=True, | |
| ) | |
| if scheduler is not None: | |
| scheduler.save_pretrained(os.path.join(directory, "scheduler")) | |
| def _save_model( | |
| self, | |
| directory: str, | |
| transformer: FluxTransformer2DModel, | |
| transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None, | |
| scheduler: Optional[SchedulerType] = None, | |
| ) -> None: | |
| # TODO(aryan): this needs refactoring | |
| if transformer_state_dict is not None: | |
| with init_empty_weights(): | |
| transformer_copy = FluxTransformer2DModel.from_config(transformer.config) | |
| transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True) | |
| transformer_copy.save_pretrained(os.path.join(directory, "transformer")) | |
| if scheduler is not None: | |
| scheduler.save_pretrained(os.path.join(directory, "scheduler")) | |