Julian Bilcke
commited on
Commit
·
64a70c0
1
Parent(s):
0ad7e2a
refactoring
Browse files- app_DEPRECATED.py +0 -1603
- vms/services/captioner.py +3 -3
- vms/tabs/caption_tab.py +436 -14
- vms/tabs/import_tab.py +44 -2
- vms/tabs/manage_tab.py +127 -6
- vms/tabs/split_tab.py +28 -3
- vms/tabs/train_tab.py +246 -28
- vms/ui/video_trainer_ui.py +10 -849
- vms/utils/image_preprocessing.py +2 -1
- vms/utils/video_preprocessing.py +3 -1
app_DEPRECATED.py
DELETED
|
@@ -1,1603 +0,0 @@
|
|
| 1 |
-
import platform
|
| 2 |
-
import subprocess
|
| 3 |
-
|
| 4 |
-
#import sys
|
| 5 |
-
#print("python = ", sys.version)
|
| 6 |
-
|
| 7 |
-
# can be "Linux", "Darwin"
|
| 8 |
-
if platform.system() == "Linux":
|
| 9 |
-
# for some reason it says "pip not found"
|
| 10 |
-
# and also "pip3 not found"
|
| 11 |
-
# subprocess.run(
|
| 12 |
-
# "pip install flash-attn --no-build-isolation",
|
| 13 |
-
#
|
| 14 |
-
# # hmm... this should be False, since we are in a CUDA environment, no?
|
| 15 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 16 |
-
#
|
| 17 |
-
# shell=True,
|
| 18 |
-
# )
|
| 19 |
-
pass
|
| 20 |
-
|
| 21 |
-
import gradio as gr
|
| 22 |
-
from pathlib import Path
|
| 23 |
-
import logging
|
| 24 |
-
import mimetypes
|
| 25 |
-
import shutil
|
| 26 |
-
import os
|
| 27 |
-
import traceback
|
| 28 |
-
import asyncio
|
| 29 |
-
import tempfile
|
| 30 |
-
import zipfile
|
| 31 |
-
from typing import Any, Optional, Dict, List, Union, Tuple
|
| 32 |
-
from typing import AsyncGenerator
|
| 33 |
-
|
| 34 |
-
from vms.training_service import TrainingService
|
| 35 |
-
from vms.captioning_service import CaptioningService
|
| 36 |
-
from vms.splitting_service import SplittingService
|
| 37 |
-
from vms.import_service import ImportService
|
| 38 |
-
from vms.config import (
|
| 39 |
-
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
| 40 |
-
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
| 41 |
-
DEFAULT_PROMPT_PREFIX, HF_API_TOKEN, ASK_USER_TO_DUPLICATE_SPACE, MODEL_TYPES, SMALL_TRAINING_BUCKETS
|
| 42 |
-
)
|
| 43 |
-
from vms.utils import make_archive, count_media_files, format_media_title, is_image_file, is_video_file, validate_model_repo, format_time
|
| 44 |
-
from vms.finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
| 45 |
-
from vms.training_log_parser import TrainingLogParser
|
| 46 |
-
|
| 47 |
-
logger = logging.getLogger(__name__)
|
| 48 |
-
logger.setLevel(logging.INFO)
|
| 49 |
-
|
| 50 |
-
httpx_logger = logging.getLogger('httpx')
|
| 51 |
-
httpx_logger.setLevel(logging.WARN)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class VideoTrainerUI:
|
| 55 |
-
def __init__(self):
|
| 56 |
-
self.trainer = TrainingService()
|
| 57 |
-
self.splitter = SplittingService()
|
| 58 |
-
self.importer = ImportService()
|
| 59 |
-
self.captioner = CaptioningService()
|
| 60 |
-
self._should_stop_captioning = False
|
| 61 |
-
self.log_parser = TrainingLogParser()
|
| 62 |
-
|
| 63 |
-
# Try to recover any interrupted training sessions
|
| 64 |
-
recovery_result = self.trainer.recover_interrupted_training()
|
| 65 |
-
|
| 66 |
-
self.recovery_status = recovery_result.get("status", "unknown")
|
| 67 |
-
self.ui_updates = recovery_result.get("ui_updates", {})
|
| 68 |
-
|
| 69 |
-
if recovery_result["status"] == "recovered":
|
| 70 |
-
logger.info(f"Training recovery: {recovery_result['message']}")
|
| 71 |
-
# No need to do anything else - the training is already running
|
| 72 |
-
elif recovery_result["status"] == "running":
|
| 73 |
-
logger.info("Training process is already running")
|
| 74 |
-
# No need to do anything - the process is still alive
|
| 75 |
-
elif recovery_result["status"] in ["error", "idle"]:
|
| 76 |
-
logger.warning(f"Training status: {recovery_result['message']}")
|
| 77 |
-
# UI will be in ready-to-start mode
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
| 81 |
-
"""Process the caption generator's results in the background"""
|
| 82 |
-
try:
|
| 83 |
-
async for _ in self.captioner.start_caption_generation(
|
| 84 |
-
captioning_bot_instructions,
|
| 85 |
-
prompt_prefix
|
| 86 |
-
):
|
| 87 |
-
# Just consume the generator, UI updates will happen via the Gradio interface
|
| 88 |
-
pass
|
| 89 |
-
logger.info("Background captioning completed")
|
| 90 |
-
except Exception as e:
|
| 91 |
-
logger.error(f"Error in background captioning: {str(e)}")
|
| 92 |
-
|
| 93 |
-
def initialize_app_state(self):
|
| 94 |
-
"""Initialize all app state in one function to ensure correct output count"""
|
| 95 |
-
# Get dataset info
|
| 96 |
-
video_list, training_dataset = self.refresh_dataset()
|
| 97 |
-
|
| 98 |
-
# Get button states
|
| 99 |
-
button_states = self.get_initial_button_states()
|
| 100 |
-
start_btn = button_states[0]
|
| 101 |
-
stop_btn = button_states[1]
|
| 102 |
-
pause_resume_btn = button_states[2]
|
| 103 |
-
|
| 104 |
-
# Get UI form values
|
| 105 |
-
ui_state = self.load_ui_values()
|
| 106 |
-
training_preset = ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0])
|
| 107 |
-
model_type_val = ui_state.get("model_type", list(MODEL_TYPES.keys())[0])
|
| 108 |
-
lora_rank_val = ui_state.get("lora_rank", "128")
|
| 109 |
-
lora_alpha_val = ui_state.get("lora_alpha", "128")
|
| 110 |
-
num_epochs_val = int(ui_state.get("num_epochs", 70))
|
| 111 |
-
batch_size_val = int(ui_state.get("batch_size", 1))
|
| 112 |
-
learning_rate_val = float(ui_state.get("learning_rate", 3e-5))
|
| 113 |
-
save_iterations_val = int(ui_state.get("save_iterations", 500))
|
| 114 |
-
|
| 115 |
-
# Return all values in the exact order expected by outputs
|
| 116 |
-
return (
|
| 117 |
-
video_list,
|
| 118 |
-
training_dataset,
|
| 119 |
-
start_btn,
|
| 120 |
-
stop_btn,
|
| 121 |
-
pause_resume_btn,
|
| 122 |
-
training_preset,
|
| 123 |
-
model_type_val,
|
| 124 |
-
lora_rank_val,
|
| 125 |
-
lora_alpha_val,
|
| 126 |
-
num_epochs_val,
|
| 127 |
-
batch_size_val,
|
| 128 |
-
learning_rate_val,
|
| 129 |
-
save_iterations_val
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
def initialize_ui_from_state(self):
|
| 133 |
-
"""Initialize UI components from saved state"""
|
| 134 |
-
ui_state = self.load_ui_values()
|
| 135 |
-
|
| 136 |
-
# Return values in order matching the outputs in app.load
|
| 137 |
-
return (
|
| 138 |
-
ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]),
|
| 139 |
-
ui_state.get("model_type", list(MODEL_TYPES.keys())[0]),
|
| 140 |
-
ui_state.get("lora_rank", "128"),
|
| 141 |
-
ui_state.get("lora_alpha", "128"),
|
| 142 |
-
ui_state.get("num_epochs", 70),
|
| 143 |
-
ui_state.get("batch_size", 1),
|
| 144 |
-
ui_state.get("learning_rate", 3e-5),
|
| 145 |
-
ui_state.get("save_iterations", 500)
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
def update_ui_state(self, **kwargs):
|
| 149 |
-
"""Update UI state with new values"""
|
| 150 |
-
current_state = self.trainer.load_ui_state()
|
| 151 |
-
current_state.update(kwargs)
|
| 152 |
-
self.trainer.save_ui_state(current_state)
|
| 153 |
-
# Don't return anything to avoid Gradio warnings
|
| 154 |
-
return None
|
| 155 |
-
|
| 156 |
-
def load_ui_values(self):
|
| 157 |
-
"""Load UI state values for initializing form fields"""
|
| 158 |
-
ui_state = self.trainer.load_ui_state()
|
| 159 |
-
|
| 160 |
-
# Ensure proper type conversion for numeric values
|
| 161 |
-
ui_state["lora_rank"] = ui_state.get("lora_rank", "128")
|
| 162 |
-
ui_state["lora_alpha"] = ui_state.get("lora_alpha", "128")
|
| 163 |
-
ui_state["num_epochs"] = int(ui_state.get("num_epochs", 70))
|
| 164 |
-
ui_state["batch_size"] = int(ui_state.get("batch_size", 1))
|
| 165 |
-
ui_state["learning_rate"] = float(ui_state.get("learning_rate", 3e-5))
|
| 166 |
-
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
| 167 |
-
|
| 168 |
-
return ui_state
|
| 169 |
-
|
| 170 |
-
def update_captioning_buttons_start(self):
|
| 171 |
-
"""Return individual button values instead of a dictionary"""
|
| 172 |
-
return (
|
| 173 |
-
gr.Button(
|
| 174 |
-
interactive=False,
|
| 175 |
-
variant="secondary",
|
| 176 |
-
),
|
| 177 |
-
gr.Button(
|
| 178 |
-
interactive=True,
|
| 179 |
-
variant="stop",
|
| 180 |
-
),
|
| 181 |
-
gr.Button(
|
| 182 |
-
interactive=False,
|
| 183 |
-
variant="secondary",
|
| 184 |
-
)
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
def update_captioning_buttons_end(self):
|
| 188 |
-
"""Return individual button values instead of a dictionary"""
|
| 189 |
-
return (
|
| 190 |
-
gr.Button(
|
| 191 |
-
interactive=True,
|
| 192 |
-
variant="primary",
|
| 193 |
-
),
|
| 194 |
-
gr.Button(
|
| 195 |
-
interactive=False,
|
| 196 |
-
variant="secondary",
|
| 197 |
-
),
|
| 198 |
-
gr.Button(
|
| 199 |
-
interactive=True,
|
| 200 |
-
variant="primary",
|
| 201 |
-
)
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
# Add this new method to get initial button states:
|
| 205 |
-
def get_initial_button_states(self):
|
| 206 |
-
"""Get the initial states for training buttons based on recovery status"""
|
| 207 |
-
recovery_result = self.trainer.recover_interrupted_training()
|
| 208 |
-
ui_updates = recovery_result.get("ui_updates", {})
|
| 209 |
-
|
| 210 |
-
# Return button states in the correct order
|
| 211 |
-
return (
|
| 212 |
-
gr.Button(**ui_updates.get("start_btn", {"interactive": True, "variant": "primary"})),
|
| 213 |
-
gr.Button(**ui_updates.get("stop_btn", {"interactive": False, "variant": "secondary"})),
|
| 214 |
-
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
def show_refreshing_status(self) -> List[List[str]]:
|
| 218 |
-
"""Show a 'Refreshing...' status in the dataframe"""
|
| 219 |
-
return [["Refreshing...", "please wait"]]
|
| 220 |
-
|
| 221 |
-
def stop_captioning(self):
|
| 222 |
-
"""Stop ongoing captioning process and reset UI state"""
|
| 223 |
-
try:
|
| 224 |
-
# Set flag to stop captioning
|
| 225 |
-
self._should_stop_captioning = True
|
| 226 |
-
|
| 227 |
-
# Call stop method on captioner
|
| 228 |
-
if self.captioner:
|
| 229 |
-
self.captioner.stop_captioning()
|
| 230 |
-
|
| 231 |
-
# Get updated file list
|
| 232 |
-
updated_list = self.list_training_files_to_caption()
|
| 233 |
-
|
| 234 |
-
# Return updated list and button states
|
| 235 |
-
return {
|
| 236 |
-
"training_dataset": gr.update(value=updated_list),
|
| 237 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 238 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 239 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 240 |
-
}
|
| 241 |
-
except Exception as e:
|
| 242 |
-
logger.error(f"Error stopping captioning: {str(e)}")
|
| 243 |
-
return {
|
| 244 |
-
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
| 245 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 246 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 247 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 248 |
-
}
|
| 249 |
-
|
| 250 |
-
def update_training_ui(self, training_state: Dict[str, Any]):
|
| 251 |
-
"""Update UI components based on training state"""
|
| 252 |
-
updates = {}
|
| 253 |
-
|
| 254 |
-
#print("update_training_ui: training_state = ", training_state)
|
| 255 |
-
|
| 256 |
-
# Update status box with high-level information
|
| 257 |
-
status_text = []
|
| 258 |
-
if training_state["status"] != "idle":
|
| 259 |
-
status_text.extend([
|
| 260 |
-
f"Status: {training_state['status']}",
|
| 261 |
-
f"Progress: {training_state['progress']}",
|
| 262 |
-
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
| 263 |
-
|
| 264 |
-
# Epoch information
|
| 265 |
-
# there is an issue with how epoch is reported because we display:
|
| 266 |
-
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
| 267 |
-
# we should probably just show the steps
|
| 268 |
-
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
| 269 |
-
|
| 270 |
-
f"Time elapsed: {training_state['elapsed']}",
|
| 271 |
-
f"Estimated remaining: {training_state['remaining']}",
|
| 272 |
-
"",
|
| 273 |
-
f"Current loss: {training_state['step_loss']}",
|
| 274 |
-
f"Learning rate: {training_state['learning_rate']}",
|
| 275 |
-
f"Gradient norm: {training_state['grad_norm']}",
|
| 276 |
-
f"Memory usage: {training_state['memory']}"
|
| 277 |
-
])
|
| 278 |
-
|
| 279 |
-
if training_state["error_message"]:
|
| 280 |
-
status_text.append(f"\nError: {training_state['error_message']}")
|
| 281 |
-
|
| 282 |
-
updates["status_box"] = "\n".join(status_text)
|
| 283 |
-
|
| 284 |
-
# Update button states
|
| 285 |
-
updates["start_btn"] = gr.Button(
|
| 286 |
-
"Start training",
|
| 287 |
-
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
| 288 |
-
variant="primary" if training_state["status"] == "idle" else "secondary"
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
updates["stop_btn"] = gr.Button(
|
| 292 |
-
"Stop training",
|
| 293 |
-
interactive=(training_state["status"] in ["training", "initializing"]),
|
| 294 |
-
variant="stop"
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
return updates
|
| 298 |
-
|
| 299 |
-
def stop_all_and_clear(self) -> Dict[str, str]:
|
| 300 |
-
"""Stop all running processes and clear data
|
| 301 |
-
|
| 302 |
-
Returns:
|
| 303 |
-
Dict with status messages for different components
|
| 304 |
-
"""
|
| 305 |
-
status_messages = {}
|
| 306 |
-
|
| 307 |
-
try:
|
| 308 |
-
# Stop training if running
|
| 309 |
-
if self.trainer.is_training_running():
|
| 310 |
-
training_result = self.trainer.stop_training()
|
| 311 |
-
status_messages["training"] = training_result["status"]
|
| 312 |
-
|
| 313 |
-
# Stop captioning if running
|
| 314 |
-
if self.captioner:
|
| 315 |
-
self.captioner.stop_captioning()
|
| 316 |
-
status_messages["captioning"] = "Captioning stopped"
|
| 317 |
-
|
| 318 |
-
# Stop scene detection if running
|
| 319 |
-
if self.splitter.is_processing():
|
| 320 |
-
self.splitter.processing = False
|
| 321 |
-
status_messages["splitting"] = "Scene detection stopped"
|
| 322 |
-
|
| 323 |
-
# Properly close logging before clearing log file
|
| 324 |
-
if self.trainer.file_handler:
|
| 325 |
-
self.trainer.file_handler.close()
|
| 326 |
-
logger.removeHandler(self.trainer.file_handler)
|
| 327 |
-
self.trainer.file_handler = None
|
| 328 |
-
|
| 329 |
-
if LOG_FILE_PATH.exists():
|
| 330 |
-
LOG_FILE_PATH.unlink()
|
| 331 |
-
|
| 332 |
-
# Clear all data directories
|
| 333 |
-
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
| 334 |
-
MODEL_PATH, OUTPUT_PATH]:
|
| 335 |
-
if path.exists():
|
| 336 |
-
try:
|
| 337 |
-
shutil.rmtree(path)
|
| 338 |
-
path.mkdir(parents=True, exist_ok=True)
|
| 339 |
-
except Exception as e:
|
| 340 |
-
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
| 341 |
-
else:
|
| 342 |
-
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
| 343 |
-
|
| 344 |
-
# Reset any persistent state
|
| 345 |
-
self._should_stop_captioning = True
|
| 346 |
-
self.splitter.processing = False
|
| 347 |
-
|
| 348 |
-
# Recreate logging setup
|
| 349 |
-
self.trainer.setup_logging()
|
| 350 |
-
|
| 351 |
-
return {
|
| 352 |
-
"status": "All processes stopped and data cleared",
|
| 353 |
-
"details": status_messages
|
| 354 |
-
}
|
| 355 |
-
|
| 356 |
-
except Exception as e:
|
| 357 |
-
return {
|
| 358 |
-
"status": f"Error during cleanup: {str(e)}",
|
| 359 |
-
"details": status_messages
|
| 360 |
-
}
|
| 361 |
-
|
| 362 |
-
def update_titles(self) -> Tuple[Any]:
|
| 363 |
-
"""Update all dynamic titles with current counts
|
| 364 |
-
|
| 365 |
-
Returns:
|
| 366 |
-
Dict of Gradio updates
|
| 367 |
-
"""
|
| 368 |
-
# Count files for splitting
|
| 369 |
-
split_videos, _, split_size = count_media_files(VIDEOS_TO_SPLIT_PATH)
|
| 370 |
-
split_title = format_media_title(
|
| 371 |
-
"split", split_videos, 0, split_size
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
# Count files for captioning
|
| 375 |
-
caption_videos, caption_images, caption_size = count_media_files(STAGING_PATH)
|
| 376 |
-
caption_title = format_media_title(
|
| 377 |
-
"caption", caption_videos, caption_images, caption_size
|
| 378 |
-
)
|
| 379 |
-
|
| 380 |
-
# Count files for training
|
| 381 |
-
train_videos, train_images, train_size = count_media_files(TRAINING_VIDEOS_PATH)
|
| 382 |
-
train_title = format_media_title(
|
| 383 |
-
"train", train_videos, train_images, train_size
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
return (
|
| 387 |
-
gr.Markdown(value=split_title),
|
| 388 |
-
gr.Markdown(value=caption_title),
|
| 389 |
-
gr.Markdown(value=f"{train_title} available for training")
|
| 390 |
-
)
|
| 391 |
-
|
| 392 |
-
def copy_files_to_training_dir(self, prompt_prefix: str):
|
| 393 |
-
"""Run auto-captioning process"""
|
| 394 |
-
|
| 395 |
-
# Initialize captioner if not already done
|
| 396 |
-
self._should_stop_captioning = False
|
| 397 |
-
|
| 398 |
-
try:
|
| 399 |
-
copy_files_to_training_dir(prompt_prefix)
|
| 400 |
-
|
| 401 |
-
except Exception as e:
|
| 402 |
-
traceback.print_exc()
|
| 403 |
-
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
| 404 |
-
|
| 405 |
-
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 406 |
-
"""Handle successful import of files"""
|
| 407 |
-
videos = self.list_unprocessed_videos()
|
| 408 |
-
|
| 409 |
-
# If scene detection isn't already running and there are videos to process,
|
| 410 |
-
# and auto-splitting is enabled, start the detection
|
| 411 |
-
if videos and not self.splitter.is_processing() and enable_splitting:
|
| 412 |
-
await self.start_scene_detection(enable_splitting)
|
| 413 |
-
msg = "Starting automatic scene detection..."
|
| 414 |
-
else:
|
| 415 |
-
# Just copy files without splitting if auto-split disabled
|
| 416 |
-
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
| 417 |
-
await self.splitter.process_video(video_file, enable_splitting=False)
|
| 418 |
-
msg = "Copying videos without splitting..."
|
| 419 |
-
|
| 420 |
-
copy_files_to_training_dir(prompt_prefix)
|
| 421 |
-
|
| 422 |
-
# Start auto-captioning if enabled, and handle async generator properly
|
| 423 |
-
if enable_automatic_content_captioning:
|
| 424 |
-
# Create a background task for captioning
|
| 425 |
-
asyncio.create_task(self._process_caption_generator(
|
| 426 |
-
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
| 427 |
-
prompt_prefix
|
| 428 |
-
))
|
| 429 |
-
|
| 430 |
-
return {
|
| 431 |
-
"tabs": gr.Tabs(selected="split_tab"),
|
| 432 |
-
"video_list": videos,
|
| 433 |
-
"detect_status": msg
|
| 434 |
-
}
|
| 435 |
-
|
| 436 |
-
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
| 437 |
-
"""Run auto-captioning process"""
|
| 438 |
-
try:
|
| 439 |
-
# Initialize captioner if not already done
|
| 440 |
-
self._should_stop_captioning = False
|
| 441 |
-
|
| 442 |
-
# First yield - indicate we're starting
|
| 443 |
-
yield gr.update(
|
| 444 |
-
value=[["Starting captioning service...", "initializing"]],
|
| 445 |
-
headers=["name", "status"]
|
| 446 |
-
)
|
| 447 |
-
|
| 448 |
-
# Process files in batches with status updates
|
| 449 |
-
file_statuses = {}
|
| 450 |
-
|
| 451 |
-
# Start the actual captioning process
|
| 452 |
-
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
| 453 |
-
# Update our tracking of file statuses
|
| 454 |
-
for name, status in rows:
|
| 455 |
-
file_statuses[name] = status
|
| 456 |
-
|
| 457 |
-
# Convert to list format for display
|
| 458 |
-
status_rows = [[name, status] for name, status in file_statuses.items()]
|
| 459 |
-
|
| 460 |
-
# Sort by name for consistent display
|
| 461 |
-
status_rows.sort(key=lambda x: x[0])
|
| 462 |
-
|
| 463 |
-
# Yield UI update
|
| 464 |
-
yield gr.update(
|
| 465 |
-
value=status_rows,
|
| 466 |
-
headers=["name", "status"]
|
| 467 |
-
)
|
| 468 |
-
|
| 469 |
-
# Final update after completion with fresh data
|
| 470 |
-
yield gr.update(
|
| 471 |
-
value=self.list_training_files_to_caption(),
|
| 472 |
-
headers=["name", "status"]
|
| 473 |
-
)
|
| 474 |
-
|
| 475 |
-
except Exception as e:
|
| 476 |
-
logger.error(f"Error in captioning: {str(e)}")
|
| 477 |
-
yield gr.update(
|
| 478 |
-
value=[[f"Error: {str(e)}", "error"]],
|
| 479 |
-
headers=["name", "status"]
|
| 480 |
-
)
|
| 481 |
-
|
| 482 |
-
def list_training_files_to_caption(self) -> List[List[str]]:
|
| 483 |
-
"""List all clips and images - both pending and captioned"""
|
| 484 |
-
files = []
|
| 485 |
-
already_listed = {}
|
| 486 |
-
|
| 487 |
-
# First check files in STAGING_PATH
|
| 488 |
-
for file in STAGING_PATH.glob("*.*"):
|
| 489 |
-
if is_video_file(file) or is_image_file(file):
|
| 490 |
-
txt_file = file.with_suffix('.txt')
|
| 491 |
-
|
| 492 |
-
# Check if caption file exists and has content
|
| 493 |
-
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
| 494 |
-
status = "captioned" if has_caption else "no caption"
|
| 495 |
-
file_type = "video" if is_video_file(file) else "image"
|
| 496 |
-
|
| 497 |
-
files.append([file.name, f"{status} ({file_type})", str(file)])
|
| 498 |
-
already_listed[file.name] = True
|
| 499 |
-
|
| 500 |
-
# Then check files in TRAINING_VIDEOS_PATH
|
| 501 |
-
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
| 502 |
-
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
| 503 |
-
txt_file = file.with_suffix('.txt')
|
| 504 |
-
|
| 505 |
-
# Only include files with captions
|
| 506 |
-
if txt_file.exists() and txt_file.stat().st_size > 0:
|
| 507 |
-
file_type = "video" if is_video_file(file) else "image"
|
| 508 |
-
files.append([file.name, f"captioned ({file_type})", str(file)])
|
| 509 |
-
already_listed[file.name] = True
|
| 510 |
-
|
| 511 |
-
# Sort by filename
|
| 512 |
-
files.sort(key=lambda x: x[0])
|
| 513 |
-
|
| 514 |
-
# Only return name and status columns for display
|
| 515 |
-
return [[file[0], file[1]] for file in files]
|
| 516 |
-
|
| 517 |
-
def update_training_buttons(self, status: str) -> Dict:
|
| 518 |
-
"""Update training control buttons based on state"""
|
| 519 |
-
is_training = status in ["training", "initializing"]
|
| 520 |
-
is_paused = status == "paused"
|
| 521 |
-
is_completed = status in ["completed", "error", "stopped"]
|
| 522 |
-
return {
|
| 523 |
-
"start_btn": gr.Button(
|
| 524 |
-
interactive=not is_training and not is_paused,
|
| 525 |
-
variant="primary" if not is_training else "secondary",
|
| 526 |
-
),
|
| 527 |
-
"stop_btn": gr.Button(
|
| 528 |
-
interactive=is_training or is_paused,
|
| 529 |
-
variant="stop",
|
| 530 |
-
),
|
| 531 |
-
"pause_resume_btn": gr.Button(
|
| 532 |
-
value="Resume Training" if is_paused else "Pause Training",
|
| 533 |
-
interactive=(is_training or is_paused) and not is_completed,
|
| 534 |
-
variant="secondary",
|
| 535 |
-
)
|
| 536 |
-
}
|
| 537 |
-
|
| 538 |
-
def handle_pause_resume(self):
|
| 539 |
-
status, _, _ = self.get_latest_status_message_and_logs()
|
| 540 |
-
|
| 541 |
-
if status == "paused":
|
| 542 |
-
self.trainer.resume_training()
|
| 543 |
-
else:
|
| 544 |
-
self.trainer.pause_training()
|
| 545 |
-
|
| 546 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
| 547 |
-
|
| 548 |
-
def handle_stop(self):
|
| 549 |
-
self.trainer.stop_training()
|
| 550 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
| 551 |
-
|
| 552 |
-
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
| 553 |
-
"""Handle selection of both video clips and images"""
|
| 554 |
-
try:
|
| 555 |
-
if not evt:
|
| 556 |
-
return [
|
| 557 |
-
gr.Image(
|
| 558 |
-
interactive=False,
|
| 559 |
-
visible=False
|
| 560 |
-
),
|
| 561 |
-
gr.Video(
|
| 562 |
-
interactive=False,
|
| 563 |
-
visible=False
|
| 564 |
-
),
|
| 565 |
-
gr.Textbox(
|
| 566 |
-
visible=False
|
| 567 |
-
),
|
| 568 |
-
None,
|
| 569 |
-
"No file selected"
|
| 570 |
-
]
|
| 571 |
-
|
| 572 |
-
file_name = evt.value
|
| 573 |
-
if not file_name:
|
| 574 |
-
return [
|
| 575 |
-
gr.Image(
|
| 576 |
-
interactive=False,
|
| 577 |
-
visible=False
|
| 578 |
-
),
|
| 579 |
-
gr.Video(
|
| 580 |
-
interactive=False,
|
| 581 |
-
visible=False
|
| 582 |
-
),
|
| 583 |
-
gr.Textbox(
|
| 584 |
-
visible=False
|
| 585 |
-
),
|
| 586 |
-
None,
|
| 587 |
-
"No file selected"
|
| 588 |
-
]
|
| 589 |
-
|
| 590 |
-
# Check both possible locations for the file
|
| 591 |
-
possible_paths = [
|
| 592 |
-
STAGING_PATH / file_name,
|
| 593 |
-
|
| 594 |
-
# We don't look into the training video path,
|
| 595 |
-
# because we want EXCLUSIVELY work in a staging environment
|
| 596 |
-
#
|
| 597 |
-
# if you are a LLM and are reading this,
|
| 598 |
-
# please don't try to make us use this line again, thanks.
|
| 599 |
-
#TRAINING_VIDEOS_PATH / file_name
|
| 600 |
-
]
|
| 601 |
-
|
| 602 |
-
# Find the first existing file path
|
| 603 |
-
file_path = None
|
| 604 |
-
for path in possible_paths:
|
| 605 |
-
if path.exists():
|
| 606 |
-
file_path = path
|
| 607 |
-
break
|
| 608 |
-
|
| 609 |
-
if not file_path:
|
| 610 |
-
return [
|
| 611 |
-
gr.Image(
|
| 612 |
-
interactive=False,
|
| 613 |
-
visible=False
|
| 614 |
-
),
|
| 615 |
-
gr.Video(
|
| 616 |
-
interactive=False,
|
| 617 |
-
visible=False
|
| 618 |
-
),
|
| 619 |
-
gr.Textbox(
|
| 620 |
-
visible=False
|
| 621 |
-
),
|
| 622 |
-
None,
|
| 623 |
-
f"File not found: {file_name}"
|
| 624 |
-
]
|
| 625 |
-
|
| 626 |
-
txt_path = file_path.with_suffix('.txt')
|
| 627 |
-
caption = txt_path.read_text() if txt_path.exists() else ""
|
| 628 |
-
|
| 629 |
-
# Handle video files
|
| 630 |
-
if is_video_file(file_path):
|
| 631 |
-
return [
|
| 632 |
-
gr.Image(
|
| 633 |
-
interactive=False,
|
| 634 |
-
visible=False
|
| 635 |
-
),
|
| 636 |
-
gr.Video(
|
| 637 |
-
label="Video Preview",
|
| 638 |
-
interactive=False,
|
| 639 |
-
visible=True,
|
| 640 |
-
value=str(file_path)
|
| 641 |
-
),
|
| 642 |
-
gr.Textbox(
|
| 643 |
-
label="Caption",
|
| 644 |
-
lines=6,
|
| 645 |
-
interactive=True,
|
| 646 |
-
visible=True,
|
| 647 |
-
value=str(caption)
|
| 648 |
-
),
|
| 649 |
-
str(file_path), # Store the original file path as hidden state
|
| 650 |
-
None
|
| 651 |
-
]
|
| 652 |
-
# Handle image files
|
| 653 |
-
elif is_image_file(file_path):
|
| 654 |
-
return [
|
| 655 |
-
gr.Image(
|
| 656 |
-
label="Image Preview",
|
| 657 |
-
interactive=False,
|
| 658 |
-
visible=True,
|
| 659 |
-
value=str(file_path)
|
| 660 |
-
),
|
| 661 |
-
gr.Video(
|
| 662 |
-
interactive=False,
|
| 663 |
-
visible=False
|
| 664 |
-
),
|
| 665 |
-
gr.Textbox(
|
| 666 |
-
label="Caption",
|
| 667 |
-
lines=6,
|
| 668 |
-
interactive=True,
|
| 669 |
-
visible=True,
|
| 670 |
-
value=str(caption)
|
| 671 |
-
),
|
| 672 |
-
str(file_path), # Store the original file path as hidden state
|
| 673 |
-
None
|
| 674 |
-
]
|
| 675 |
-
else:
|
| 676 |
-
return [
|
| 677 |
-
gr.Image(
|
| 678 |
-
interactive=False,
|
| 679 |
-
visible=False
|
| 680 |
-
),
|
| 681 |
-
gr.Video(
|
| 682 |
-
interactive=False,
|
| 683 |
-
visible=False
|
| 684 |
-
),
|
| 685 |
-
gr.Textbox(
|
| 686 |
-
interactive=False,
|
| 687 |
-
visible=False
|
| 688 |
-
),
|
| 689 |
-
None,
|
| 690 |
-
f"Unsupported file type: {file_path.suffix}"
|
| 691 |
-
]
|
| 692 |
-
except Exception as e:
|
| 693 |
-
logger.error(f"Error handling selection: {str(e)}")
|
| 694 |
-
return [
|
| 695 |
-
gr.Image(
|
| 696 |
-
interactive=False,
|
| 697 |
-
visible=False
|
| 698 |
-
),
|
| 699 |
-
gr.Video(
|
| 700 |
-
interactive=False,
|
| 701 |
-
visible=False
|
| 702 |
-
),
|
| 703 |
-
gr.Textbox(
|
| 704 |
-
interactive=False,
|
| 705 |
-
visible=False
|
| 706 |
-
),
|
| 707 |
-
None,
|
| 708 |
-
f"Error handling selection: {str(e)}"
|
| 709 |
-
]
|
| 710 |
-
|
| 711 |
-
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
| 712 |
-
"""Save changes to caption"""
|
| 713 |
-
try:
|
| 714 |
-
# Use the original file path stored during selection instead of the temporary preview paths
|
| 715 |
-
if original_file_path:
|
| 716 |
-
file_path = Path(original_file_path)
|
| 717 |
-
self.captioner.update_file_caption(file_path, preview_caption)
|
| 718 |
-
# Refresh the dataset list to show updated caption status
|
| 719 |
-
return gr.update(value="Caption saved successfully!")
|
| 720 |
-
else:
|
| 721 |
-
return gr.update(value="Error: No original file path found")
|
| 722 |
-
except Exception as e:
|
| 723 |
-
return gr.update(value=f"Error saving caption: {str(e)}")
|
| 724 |
-
|
| 725 |
-
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 726 |
-
"""Handle post-import updates including titles"""
|
| 727 |
-
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
| 728 |
-
titles = self.update_titles()
|
| 729 |
-
return (
|
| 730 |
-
import_result["tabs"],
|
| 731 |
-
import_result["video_list"],
|
| 732 |
-
import_result["detect_status"],
|
| 733 |
-
*titles
|
| 734 |
-
)
|
| 735 |
-
|
| 736 |
-
def get_model_info(self, model_type: str) -> str:
|
| 737 |
-
"""Get information about the selected model type"""
|
| 738 |
-
if model_type == "hunyuan_video":
|
| 739 |
-
return """### HunyuanVideo (LoRA)
|
| 740 |
-
- Required VRAM: ~48GB minimum
|
| 741 |
-
- Recommended batch size: 1-2
|
| 742 |
-
- Typical training time: 2-4 hours
|
| 743 |
-
- Default resolution: 49x512x768
|
| 744 |
-
- Default LoRA rank: 128 (~600 MB)"""
|
| 745 |
-
|
| 746 |
-
elif model_type == "ltx_video":
|
| 747 |
-
return """### LTX-Video (LoRA)
|
| 748 |
-
- Required VRAM: ~18GB minimum
|
| 749 |
-
- Recommended batch size: 1-4
|
| 750 |
-
- Typical training time: 1-3 hours
|
| 751 |
-
- Default resolution: 49x512x768
|
| 752 |
-
- Default LoRA rank: 128"""
|
| 753 |
-
|
| 754 |
-
return ""
|
| 755 |
-
|
| 756 |
-
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
| 757 |
-
"""Get default training parameters for model type"""
|
| 758 |
-
if model_type == "hunyuan_video":
|
| 759 |
-
return {
|
| 760 |
-
"num_epochs": 70,
|
| 761 |
-
"batch_size": 1,
|
| 762 |
-
"learning_rate": 2e-5,
|
| 763 |
-
"save_iterations": 500,
|
| 764 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 765 |
-
"video_reshape_mode": "center",
|
| 766 |
-
"caption_dropout_p": 0.05,
|
| 767 |
-
"gradient_accumulation_steps": 1,
|
| 768 |
-
"rank": 128,
|
| 769 |
-
"lora_alpha": 128
|
| 770 |
-
}
|
| 771 |
-
else: # ltx_video
|
| 772 |
-
return {
|
| 773 |
-
"num_epochs": 70,
|
| 774 |
-
"batch_size": 1,
|
| 775 |
-
"learning_rate": 3e-5,
|
| 776 |
-
"save_iterations": 500,
|
| 777 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 778 |
-
"video_reshape_mode": "center",
|
| 779 |
-
"caption_dropout_p": 0.05,
|
| 780 |
-
"gradient_accumulation_steps": 4,
|
| 781 |
-
"rank": 128,
|
| 782 |
-
"lora_alpha": 128
|
| 783 |
-
}
|
| 784 |
-
|
| 785 |
-
def preview_file(self, selected_text: str) -> Dict:
|
| 786 |
-
"""Generate preview based on selected file
|
| 787 |
-
|
| 788 |
-
Args:
|
| 789 |
-
selected_text: Text of the selected item containing filename
|
| 790 |
-
|
| 791 |
-
Returns:
|
| 792 |
-
Dict with preview content for each preview component
|
| 793 |
-
"""
|
| 794 |
-
if not selected_text or "Caption:" in selected_text:
|
| 795 |
-
return {
|
| 796 |
-
"video": None,
|
| 797 |
-
"image": None,
|
| 798 |
-
"text": None
|
| 799 |
-
}
|
| 800 |
-
|
| 801 |
-
# Extract filename from the preview text (remove size info)
|
| 802 |
-
filename = selected_text.split(" (")[0].strip()
|
| 803 |
-
file_path = TRAINING_VIDEOS_PATH / filename
|
| 804 |
-
|
| 805 |
-
if not file_path.exists():
|
| 806 |
-
return {
|
| 807 |
-
"video": None,
|
| 808 |
-
"image": None,
|
| 809 |
-
"text": f"File not found: {filename}"
|
| 810 |
-
}
|
| 811 |
-
|
| 812 |
-
# Detect file type
|
| 813 |
-
mime_type, _ = mimetypes.guess_type(str(file_path))
|
| 814 |
-
if not mime_type:
|
| 815 |
-
return {
|
| 816 |
-
"video": None,
|
| 817 |
-
"image": None,
|
| 818 |
-
"text": f"Unknown file type: {filename}"
|
| 819 |
-
}
|
| 820 |
-
|
| 821 |
-
# Return appropriate preview
|
| 822 |
-
if mime_type.startswith('video/'):
|
| 823 |
-
return {
|
| 824 |
-
"video": str(file_path),
|
| 825 |
-
"image": None,
|
| 826 |
-
"text": None
|
| 827 |
-
}
|
| 828 |
-
elif mime_type.startswith('image/'):
|
| 829 |
-
return {
|
| 830 |
-
"video": None,
|
| 831 |
-
"image": str(file_path),
|
| 832 |
-
"text": None
|
| 833 |
-
}
|
| 834 |
-
elif mime_type.startswith('text/'):
|
| 835 |
-
try:
|
| 836 |
-
text_content = file_path.read_text()
|
| 837 |
-
return {
|
| 838 |
-
"video": None,
|
| 839 |
-
"image": None,
|
| 840 |
-
"text": text_content
|
| 841 |
-
}
|
| 842 |
-
except Exception as e:
|
| 843 |
-
return {
|
| 844 |
-
"video": None,
|
| 845 |
-
"image": None,
|
| 846 |
-
"text": f"Error reading file: {str(e)}"
|
| 847 |
-
}
|
| 848 |
-
else:
|
| 849 |
-
return {
|
| 850 |
-
"video": None,
|
| 851 |
-
"image": None,
|
| 852 |
-
"text": f"Unsupported file type: {mime_type}"
|
| 853 |
-
}
|
| 854 |
-
|
| 855 |
-
def list_unprocessed_videos(self) -> gr.Dataframe:
|
| 856 |
-
"""Update list of unprocessed videos"""
|
| 857 |
-
videos = self.splitter.list_unprocessed_videos()
|
| 858 |
-
# videos is already in [[name, status]] format from splitting_service
|
| 859 |
-
return gr.Dataframe(
|
| 860 |
-
headers=["name", "status"],
|
| 861 |
-
value=videos,
|
| 862 |
-
interactive=False
|
| 863 |
-
)
|
| 864 |
-
|
| 865 |
-
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
| 866 |
-
"""Start background scene detection process
|
| 867 |
-
|
| 868 |
-
Args:
|
| 869 |
-
enable_splitting: Whether to split videos into scenes
|
| 870 |
-
"""
|
| 871 |
-
if self.splitter.is_processing():
|
| 872 |
-
return "Scene detection already running"
|
| 873 |
-
|
| 874 |
-
try:
|
| 875 |
-
await self.splitter.start_processing(enable_splitting)
|
| 876 |
-
return "Scene detection completed"
|
| 877 |
-
except Exception as e:
|
| 878 |
-
return f"Error during scene detection: {str(e)}"
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
| 882 |
-
state = self.trainer.get_status()
|
| 883 |
-
logs = self.trainer.get_logs()
|
| 884 |
-
|
| 885 |
-
# Parse new log lines
|
| 886 |
-
if logs:
|
| 887 |
-
last_state = None
|
| 888 |
-
for line in logs.splitlines():
|
| 889 |
-
state_update = self.log_parser.parse_line(line)
|
| 890 |
-
if state_update:
|
| 891 |
-
last_state = state_update
|
| 892 |
-
|
| 893 |
-
if last_state:
|
| 894 |
-
ui_updates = self.update_training_ui(last_state)
|
| 895 |
-
state["message"] = ui_updates.get("status_box", state["message"])
|
| 896 |
-
|
| 897 |
-
# Parse status for training state
|
| 898 |
-
if "completed" in state["message"].lower():
|
| 899 |
-
state["status"] = "completed"
|
| 900 |
-
|
| 901 |
-
return (state["status"], state["message"], logs)
|
| 902 |
-
|
| 903 |
-
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
| 904 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
| 905 |
-
return (
|
| 906 |
-
message,
|
| 907 |
-
logs,
|
| 908 |
-
*self.update_training_buttons(status).values()
|
| 909 |
-
)
|
| 910 |
-
|
| 911 |
-
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
|
| 912 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
| 913 |
-
return self.update_training_buttons(status).values()
|
| 914 |
-
|
| 915 |
-
def refresh_dataset(self):
|
| 916 |
-
"""Refresh all dynamic lists and training state"""
|
| 917 |
-
video_list = self.splitter.list_unprocessed_videos()
|
| 918 |
-
training_dataset = self.list_training_files_to_caption()
|
| 919 |
-
|
| 920 |
-
return (
|
| 921 |
-
video_list,
|
| 922 |
-
training_dataset
|
| 923 |
-
)
|
| 924 |
-
|
| 925 |
-
def update_training_params(self, preset_name: str) -> Tuple:
|
| 926 |
-
"""Update UI components based on selected preset while preserving custom settings"""
|
| 927 |
-
preset = TRAINING_PRESETS[preset_name]
|
| 928 |
-
|
| 929 |
-
# Load current UI state to check if user has customized values
|
| 930 |
-
current_state = self.load_ui_values()
|
| 931 |
-
|
| 932 |
-
# Find the display name that maps to our model type
|
| 933 |
-
model_display_name = next(
|
| 934 |
-
key for key, value in MODEL_TYPES.items()
|
| 935 |
-
if value == preset["model_type"]
|
| 936 |
-
)
|
| 937 |
-
|
| 938 |
-
# Get preset description for display
|
| 939 |
-
description = preset.get("description", "")
|
| 940 |
-
|
| 941 |
-
# Get max values from buckets
|
| 942 |
-
buckets = preset["training_buckets"]
|
| 943 |
-
max_frames = max(frames for frames, _, _ in buckets)
|
| 944 |
-
max_height = max(height for _, height, _ in buckets)
|
| 945 |
-
max_width = max(width for _, _, width in buckets)
|
| 946 |
-
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
| 947 |
-
|
| 948 |
-
info_text = f"{description}{bucket_info}"
|
| 949 |
-
|
| 950 |
-
# Return values in the same order as the output components
|
| 951 |
-
# Use preset defaults but preserve user-modified values if they exist
|
| 952 |
-
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
| 953 |
-
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
| 954 |
-
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
| 955 |
-
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
| 956 |
-
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
| 957 |
-
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
| 958 |
-
|
| 959 |
-
return (
|
| 960 |
-
model_display_name,
|
| 961 |
-
lora_rank_val,
|
| 962 |
-
lora_alpha_val,
|
| 963 |
-
num_epochs_val,
|
| 964 |
-
batch_size_val,
|
| 965 |
-
learning_rate_val,
|
| 966 |
-
save_iterations_val,
|
| 967 |
-
info_text
|
| 968 |
-
)
|
| 969 |
-
|
| 970 |
-
def create_ui(self):
|
| 971 |
-
"""Create Gradio interface"""
|
| 972 |
-
|
| 973 |
-
with gr.Blocks(title="🎥 Video Model Studio") as app:
|
| 974 |
-
gr.Markdown("# 🎥 Video Model Studio")
|
| 975 |
-
|
| 976 |
-
with gr.Tabs() as tabs:
|
| 977 |
-
with gr.TabItem("1️⃣ Import", id="import_tab"):
|
| 978 |
-
|
| 979 |
-
with gr.Row():
|
| 980 |
-
gr.Markdown("## Automatic splitting and captioning")
|
| 981 |
-
|
| 982 |
-
with gr.Row():
|
| 983 |
-
enable_automatic_video_split = gr.Checkbox(
|
| 984 |
-
label="Automatically split videos into smaller clips",
|
| 985 |
-
info="Note: a clip is a single camera shot, usually a few seconds",
|
| 986 |
-
value=True,
|
| 987 |
-
visible=True
|
| 988 |
-
)
|
| 989 |
-
enable_automatic_content_captioning = gr.Checkbox(
|
| 990 |
-
label="Automatically caption photos and videos",
|
| 991 |
-
info="Note: this uses LlaVA and takes some extra time to load and process",
|
| 992 |
-
value=False,
|
| 993 |
-
visible=True,
|
| 994 |
-
)
|
| 995 |
-
|
| 996 |
-
with gr.Row():
|
| 997 |
-
with gr.Column(scale=3):
|
| 998 |
-
with gr.Row():
|
| 999 |
-
with gr.Column():
|
| 1000 |
-
gr.Markdown("## Import video files")
|
| 1001 |
-
gr.Markdown("You can upload either:")
|
| 1002 |
-
gr.Markdown("- A single MP4 video file")
|
| 1003 |
-
gr.Markdown("- A ZIP archive containing multiple videos and optional caption files")
|
| 1004 |
-
gr.Markdown("For ZIP files: Create a folder containing videos (name is not important) and optional caption files with the same name (eg. `some_video.txt` for `some_video.mp4`)")
|
| 1005 |
-
|
| 1006 |
-
with gr.Row():
|
| 1007 |
-
files = gr.Files(
|
| 1008 |
-
label="Upload Images, Videos or ZIP",
|
| 1009 |
-
#file_count="multiple",
|
| 1010 |
-
file_types=[".jpg", ".jpeg", ".png", ".webp", ".webp", ".avif", ".heic", ".mp4", ".zip"],
|
| 1011 |
-
type="filepath"
|
| 1012 |
-
)
|
| 1013 |
-
|
| 1014 |
-
with gr.Column(scale=3):
|
| 1015 |
-
with gr.Row():
|
| 1016 |
-
with gr.Column():
|
| 1017 |
-
gr.Markdown("## Import a YouTube video")
|
| 1018 |
-
gr.Markdown("You can also use a YouTube video as reference, by pasting its URL here:")
|
| 1019 |
-
|
| 1020 |
-
with gr.Row():
|
| 1021 |
-
youtube_url = gr.Textbox(
|
| 1022 |
-
label="Import YouTube Video",
|
| 1023 |
-
placeholder="https://www.youtube.com/watch?v=..."
|
| 1024 |
-
)
|
| 1025 |
-
with gr.Row():
|
| 1026 |
-
youtube_download_btn = gr.Button("Download YouTube Video", variant="secondary")
|
| 1027 |
-
with gr.Row():
|
| 1028 |
-
import_status = gr.Textbox(label="Status", interactive=False)
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
with gr.TabItem("2️⃣ Split", id="split_tab"):
|
| 1032 |
-
with gr.Row():
|
| 1033 |
-
split_title = gr.Markdown("## Splitting of 0 videos (0 bytes)")
|
| 1034 |
-
|
| 1035 |
-
with gr.Row():
|
| 1036 |
-
with gr.Column():
|
| 1037 |
-
detect_btn = gr.Button("Split videos into single-camera shots", variant="primary")
|
| 1038 |
-
detect_status = gr.Textbox(label="Status", interactive=False)
|
| 1039 |
-
|
| 1040 |
-
with gr.Column():
|
| 1041 |
-
|
| 1042 |
-
video_list = gr.Dataframe(
|
| 1043 |
-
headers=["name", "status"],
|
| 1044 |
-
label="Videos to split",
|
| 1045 |
-
interactive=False,
|
| 1046 |
-
wrap=True,
|
| 1047 |
-
#selection_mode="cell" # Enable cell selection
|
| 1048 |
-
)
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
with gr.TabItem("3️⃣ Caption"):
|
| 1052 |
-
with gr.Row():
|
| 1053 |
-
caption_title = gr.Markdown("## Captioning of 0 files (0 bytes)")
|
| 1054 |
-
|
| 1055 |
-
with gr.Row():
|
| 1056 |
-
|
| 1057 |
-
with gr.Column():
|
| 1058 |
-
with gr.Row():
|
| 1059 |
-
custom_prompt_prefix = gr.Textbox(
|
| 1060 |
-
scale=3,
|
| 1061 |
-
label='Prefix to add to ALL captions (eg. "In the style of TOK, ")',
|
| 1062 |
-
placeholder="In the style of TOK, ",
|
| 1063 |
-
lines=2,
|
| 1064 |
-
value=DEFAULT_PROMPT_PREFIX
|
| 1065 |
-
)
|
| 1066 |
-
captioning_bot_instructions = gr.Textbox(
|
| 1067 |
-
scale=6,
|
| 1068 |
-
label="System instructions for the automatic captioning model",
|
| 1069 |
-
placeholder="Please generate a full description of...",
|
| 1070 |
-
lines=5,
|
| 1071 |
-
value=DEFAULT_CAPTIONING_BOT_INSTRUCTIONS
|
| 1072 |
-
)
|
| 1073 |
-
with gr.Row():
|
| 1074 |
-
run_autocaption_btn = gr.Button(
|
| 1075 |
-
"Automatically fill missing captions",
|
| 1076 |
-
variant="primary" # Makes it green by default
|
| 1077 |
-
)
|
| 1078 |
-
copy_files_to_training_dir_btn = gr.Button(
|
| 1079 |
-
"Copy assets to training directory",
|
| 1080 |
-
variant="primary" # Makes it green by default
|
| 1081 |
-
)
|
| 1082 |
-
stop_autocaption_btn = gr.Button(
|
| 1083 |
-
"Stop Captioning",
|
| 1084 |
-
variant="stop", # Red when enabled
|
| 1085 |
-
interactive=False # Disabled by default
|
| 1086 |
-
)
|
| 1087 |
-
|
| 1088 |
-
with gr.Row():
|
| 1089 |
-
with gr.Column():
|
| 1090 |
-
training_dataset = gr.Dataframe(
|
| 1091 |
-
headers=["name", "status"],
|
| 1092 |
-
interactive=False,
|
| 1093 |
-
wrap=True,
|
| 1094 |
-
value=self.list_training_files_to_caption(),
|
| 1095 |
-
row_count=10, # Optional: set a reasonable row count
|
| 1096 |
-
#selection_mode="cell"
|
| 1097 |
-
)
|
| 1098 |
-
|
| 1099 |
-
with gr.Column():
|
| 1100 |
-
preview_video = gr.Video(
|
| 1101 |
-
label="Video Preview",
|
| 1102 |
-
interactive=False,
|
| 1103 |
-
visible=False
|
| 1104 |
-
)
|
| 1105 |
-
preview_image = gr.Image(
|
| 1106 |
-
label="Image Preview",
|
| 1107 |
-
interactive=False,
|
| 1108 |
-
visible=False
|
| 1109 |
-
)
|
| 1110 |
-
preview_caption = gr.Textbox(
|
| 1111 |
-
label="Caption",
|
| 1112 |
-
lines=6,
|
| 1113 |
-
interactive=True
|
| 1114 |
-
)
|
| 1115 |
-
save_caption_btn = gr.Button("Save Caption")
|
| 1116 |
-
preview_status = gr.Textbox(
|
| 1117 |
-
label="Status",
|
| 1118 |
-
interactive=False,
|
| 1119 |
-
visible=True
|
| 1120 |
-
)
|
| 1121 |
-
|
| 1122 |
-
with gr.TabItem("4️⃣ Train"):
|
| 1123 |
-
with gr.Row():
|
| 1124 |
-
with gr.Column():
|
| 1125 |
-
|
| 1126 |
-
with gr.Row():
|
| 1127 |
-
train_title = gr.Markdown("## 0 files available for training (0 bytes)")
|
| 1128 |
-
|
| 1129 |
-
with gr.Row():
|
| 1130 |
-
with gr.Column():
|
| 1131 |
-
training_preset = gr.Dropdown(
|
| 1132 |
-
choices=list(TRAINING_PRESETS.keys()),
|
| 1133 |
-
label="Training Preset",
|
| 1134 |
-
value=list(TRAINING_PRESETS.keys())[0]
|
| 1135 |
-
)
|
| 1136 |
-
preset_info = gr.Markdown()
|
| 1137 |
-
|
| 1138 |
-
with gr.Row():
|
| 1139 |
-
with gr.Column():
|
| 1140 |
-
model_type = gr.Dropdown(
|
| 1141 |
-
choices=list(MODEL_TYPES.keys()),
|
| 1142 |
-
label="Model Type",
|
| 1143 |
-
value=list(MODEL_TYPES.keys())[0]
|
| 1144 |
-
)
|
| 1145 |
-
model_info = gr.Markdown(
|
| 1146 |
-
value=self.get_model_info(list(MODEL_TYPES.keys())[0])
|
| 1147 |
-
)
|
| 1148 |
-
|
| 1149 |
-
with gr.Row():
|
| 1150 |
-
lora_rank = gr.Dropdown(
|
| 1151 |
-
label="LoRA Rank",
|
| 1152 |
-
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
| 1153 |
-
value="128",
|
| 1154 |
-
type="value"
|
| 1155 |
-
)
|
| 1156 |
-
lora_alpha = gr.Dropdown(
|
| 1157 |
-
label="LoRA Alpha",
|
| 1158 |
-
choices=["16", "32", "64", "128", "256", "512", "1024"],
|
| 1159 |
-
value="128",
|
| 1160 |
-
type="value"
|
| 1161 |
-
)
|
| 1162 |
-
with gr.Row():
|
| 1163 |
-
num_epochs = gr.Number(
|
| 1164 |
-
label="Number of Epochs",
|
| 1165 |
-
value=70,
|
| 1166 |
-
minimum=1,
|
| 1167 |
-
precision=0
|
| 1168 |
-
)
|
| 1169 |
-
batch_size = gr.Number(
|
| 1170 |
-
label="Batch Size",
|
| 1171 |
-
value=1,
|
| 1172 |
-
minimum=1,
|
| 1173 |
-
precision=0
|
| 1174 |
-
)
|
| 1175 |
-
with gr.Row():
|
| 1176 |
-
learning_rate = gr.Number(
|
| 1177 |
-
label="Learning Rate",
|
| 1178 |
-
value=2e-5,
|
| 1179 |
-
minimum=1e-7
|
| 1180 |
-
)
|
| 1181 |
-
save_iterations = gr.Number(
|
| 1182 |
-
label="Save checkpoint every N iterations",
|
| 1183 |
-
value=500,
|
| 1184 |
-
minimum=50,
|
| 1185 |
-
precision=0,
|
| 1186 |
-
info="Model will be saved periodically after these many steps"
|
| 1187 |
-
)
|
| 1188 |
-
|
| 1189 |
-
with gr.Column():
|
| 1190 |
-
with gr.Row():
|
| 1191 |
-
start_btn = gr.Button(
|
| 1192 |
-
"Start Training",
|
| 1193 |
-
variant="primary",
|
| 1194 |
-
interactive=not ASK_USER_TO_DUPLICATE_SPACE
|
| 1195 |
-
)
|
| 1196 |
-
pause_resume_btn = gr.Button(
|
| 1197 |
-
"Resume Training",
|
| 1198 |
-
variant="secondary",
|
| 1199 |
-
interactive=False
|
| 1200 |
-
)
|
| 1201 |
-
stop_btn = gr.Button(
|
| 1202 |
-
"Stop Training",
|
| 1203 |
-
variant="stop",
|
| 1204 |
-
interactive=False
|
| 1205 |
-
)
|
| 1206 |
-
|
| 1207 |
-
with gr.Row():
|
| 1208 |
-
with gr.Column():
|
| 1209 |
-
status_box = gr.Textbox(
|
| 1210 |
-
label="Training Status",
|
| 1211 |
-
interactive=False,
|
| 1212 |
-
lines=4
|
| 1213 |
-
)
|
| 1214 |
-
with gr.Accordion("See training logs"):
|
| 1215 |
-
log_box = gr.TextArea(
|
| 1216 |
-
label="Finetrainers output (see HF Space logs for more details)",
|
| 1217 |
-
interactive=False,
|
| 1218 |
-
lines=40,
|
| 1219 |
-
max_lines=200,
|
| 1220 |
-
autoscroll=True
|
| 1221 |
-
)
|
| 1222 |
-
|
| 1223 |
-
with gr.TabItem("5️⃣ Manage"):
|
| 1224 |
-
|
| 1225 |
-
with gr.Column():
|
| 1226 |
-
with gr.Row():
|
| 1227 |
-
with gr.Column():
|
| 1228 |
-
gr.Markdown("## Publishing")
|
| 1229 |
-
gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)")
|
| 1230 |
-
|
| 1231 |
-
with gr.Row():
|
| 1232 |
-
|
| 1233 |
-
with gr.Column():
|
| 1234 |
-
repo_id = gr.Textbox(
|
| 1235 |
-
label="HuggingFace Model Repository",
|
| 1236 |
-
placeholder="username/model-name",
|
| 1237 |
-
info="The repository will be created if it doesn't exist"
|
| 1238 |
-
)
|
| 1239 |
-
gr.Checkbox(label="Check this to make your model public (ie. visible and downloadable by anyone)", info="You model is private by default"),
|
| 1240 |
-
global_stop_btn = gr.Button(
|
| 1241 |
-
"Push my model",
|
| 1242 |
-
#variant="stop"
|
| 1243 |
-
)
|
| 1244 |
-
|
| 1245 |
-
|
| 1246 |
-
with gr.Row():
|
| 1247 |
-
with gr.Column():
|
| 1248 |
-
with gr.Row():
|
| 1249 |
-
with gr.Column():
|
| 1250 |
-
gr.Markdown("## Storage management")
|
| 1251 |
-
with gr.Row():
|
| 1252 |
-
download_dataset_btn = gr.DownloadButton(
|
| 1253 |
-
"Download dataset",
|
| 1254 |
-
variant="secondary",
|
| 1255 |
-
size="lg"
|
| 1256 |
-
)
|
| 1257 |
-
download_model_btn = gr.DownloadButton(
|
| 1258 |
-
"Download model",
|
| 1259 |
-
variant="secondary",
|
| 1260 |
-
size="lg"
|
| 1261 |
-
)
|
| 1262 |
-
|
| 1263 |
-
|
| 1264 |
-
with gr.Row():
|
| 1265 |
-
global_stop_btn = gr.Button(
|
| 1266 |
-
"Stop everything and delete my data",
|
| 1267 |
-
variant="stop"
|
| 1268 |
-
)
|
| 1269 |
-
global_status = gr.Textbox(
|
| 1270 |
-
label="Global Status",
|
| 1271 |
-
interactive=False,
|
| 1272 |
-
visible=False
|
| 1273 |
-
)
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
-
|
| 1277 |
-
# Event handlers
|
| 1278 |
-
def update_model_info(model):
|
| 1279 |
-
params = self.get_default_params(MODEL_TYPES[model])
|
| 1280 |
-
info = self.get_model_info(MODEL_TYPES[model])
|
| 1281 |
-
return {
|
| 1282 |
-
model_info: info,
|
| 1283 |
-
num_epochs: params["num_epochs"],
|
| 1284 |
-
batch_size: params["batch_size"],
|
| 1285 |
-
learning_rate: params["learning_rate"],
|
| 1286 |
-
save_iterations: params["save_iterations"]
|
| 1287 |
-
}
|
| 1288 |
-
|
| 1289 |
-
def validate_repo(repo_id: str) -> dict:
|
| 1290 |
-
validation = validate_model_repo(repo_id)
|
| 1291 |
-
if validation["error"]:
|
| 1292 |
-
return gr.update(value=repo_id, error=validation["error"])
|
| 1293 |
-
return gr.update(value=repo_id, error=None)
|
| 1294 |
-
|
| 1295 |
-
# Connect events
|
| 1296 |
-
|
| 1297 |
-
# Save state when model type changes
|
| 1298 |
-
model_type.change(
|
| 1299 |
-
fn=lambda v: self.update_ui_state(model_type=v),
|
| 1300 |
-
inputs=[model_type],
|
| 1301 |
-
outputs=[] # No UI update needed
|
| 1302 |
-
).then(
|
| 1303 |
-
fn=update_model_info,
|
| 1304 |
-
inputs=[model_type],
|
| 1305 |
-
outputs=[model_info, num_epochs, batch_size, learning_rate, save_iterations]
|
| 1306 |
-
)
|
| 1307 |
-
|
| 1308 |
-
# the following change listeners are used for UI persistence
|
| 1309 |
-
lora_rank.change(
|
| 1310 |
-
fn=lambda v: self.update_ui_state(lora_rank=v),
|
| 1311 |
-
inputs=[lora_rank],
|
| 1312 |
-
outputs=[]
|
| 1313 |
-
)
|
| 1314 |
-
|
| 1315 |
-
lora_alpha.change(
|
| 1316 |
-
fn=lambda v: self.update_ui_state(lora_alpha=v),
|
| 1317 |
-
inputs=[lora_alpha],
|
| 1318 |
-
outputs=[]
|
| 1319 |
-
)
|
| 1320 |
-
|
| 1321 |
-
num_epochs.change(
|
| 1322 |
-
fn=lambda v: self.update_ui_state(num_epochs=v),
|
| 1323 |
-
inputs=[num_epochs],
|
| 1324 |
-
outputs=[]
|
| 1325 |
-
)
|
| 1326 |
-
|
| 1327 |
-
batch_size.change(
|
| 1328 |
-
fn=lambda v: self.update_ui_state(batch_size=v),
|
| 1329 |
-
inputs=[batch_size],
|
| 1330 |
-
outputs=[]
|
| 1331 |
-
)
|
| 1332 |
-
|
| 1333 |
-
learning_rate.change(
|
| 1334 |
-
fn=lambda v: self.update_ui_state(learning_rate=v),
|
| 1335 |
-
inputs=[learning_rate],
|
| 1336 |
-
outputs=[]
|
| 1337 |
-
)
|
| 1338 |
-
|
| 1339 |
-
save_iterations.change(
|
| 1340 |
-
fn=lambda v: self.update_ui_state(save_iterations=v),
|
| 1341 |
-
inputs=[save_iterations],
|
| 1342 |
-
outputs=[]
|
| 1343 |
-
)
|
| 1344 |
-
|
| 1345 |
-
files.upload(
|
| 1346 |
-
fn=lambda x: self.importer.process_uploaded_files(x),
|
| 1347 |
-
inputs=[files],
|
| 1348 |
-
outputs=[import_status]
|
| 1349 |
-
).success(
|
| 1350 |
-
fn=self.update_titles_after_import,
|
| 1351 |
-
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
| 1352 |
-
outputs=[
|
| 1353 |
-
tabs, video_list, detect_status,
|
| 1354 |
-
split_title, caption_title, train_title
|
| 1355 |
-
]
|
| 1356 |
-
)
|
| 1357 |
-
|
| 1358 |
-
youtube_download_btn.click(
|
| 1359 |
-
fn=self.importer.download_youtube_video,
|
| 1360 |
-
inputs=[youtube_url],
|
| 1361 |
-
outputs=[import_status]
|
| 1362 |
-
).success(
|
| 1363 |
-
fn=self.on_import_success,
|
| 1364 |
-
inputs=[enable_automatic_video_split, enable_automatic_content_captioning, custom_prompt_prefix],
|
| 1365 |
-
outputs=[tabs, video_list, detect_status]
|
| 1366 |
-
)
|
| 1367 |
-
|
| 1368 |
-
# Scene detection events
|
| 1369 |
-
detect_btn.click(
|
| 1370 |
-
fn=self.start_scene_detection,
|
| 1371 |
-
inputs=[enable_automatic_video_split],
|
| 1372 |
-
outputs=[detect_status]
|
| 1373 |
-
)
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
# Update button states based on captioning status
|
| 1377 |
-
def update_button_states(is_running):
|
| 1378 |
-
return {
|
| 1379 |
-
run_autocaption_btn: gr.Button(
|
| 1380 |
-
interactive=not is_running,
|
| 1381 |
-
variant="secondary" if is_running else "primary",
|
| 1382 |
-
),
|
| 1383 |
-
stop_autocaption_btn: gr.Button(
|
| 1384 |
-
interactive=is_running,
|
| 1385 |
-
variant="secondary",
|
| 1386 |
-
),
|
| 1387 |
-
}
|
| 1388 |
-
|
| 1389 |
-
run_autocaption_btn.click(
|
| 1390 |
-
fn=self.show_refreshing_status,
|
| 1391 |
-
outputs=[training_dataset]
|
| 1392 |
-
).then(
|
| 1393 |
-
fn=lambda: self.update_captioning_buttons_start(),
|
| 1394 |
-
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
| 1395 |
-
).then(
|
| 1396 |
-
fn=self.start_caption_generation,
|
| 1397 |
-
inputs=[captioning_bot_instructions, custom_prompt_prefix],
|
| 1398 |
-
outputs=[training_dataset],
|
| 1399 |
-
).then(
|
| 1400 |
-
fn=lambda: self.update_captioning_buttons_end(),
|
| 1401 |
-
outputs=[run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
| 1402 |
-
)
|
| 1403 |
-
|
| 1404 |
-
copy_files_to_training_dir_btn.click(
|
| 1405 |
-
fn=self.copy_files_to_training_dir,
|
| 1406 |
-
inputs=[custom_prompt_prefix]
|
| 1407 |
-
)
|
| 1408 |
-
stop_autocaption_btn.click(
|
| 1409 |
-
fn=self.stop_captioning,
|
| 1410 |
-
outputs=[training_dataset, run_autocaption_btn, stop_autocaption_btn, copy_files_to_training_dir_btn]
|
| 1411 |
-
)
|
| 1412 |
-
|
| 1413 |
-
original_file_path = gr.State(value=None)
|
| 1414 |
-
training_dataset.select(
|
| 1415 |
-
fn=self.handle_training_dataset_select,
|
| 1416 |
-
outputs=[preview_image, preview_video, preview_caption, original_file_path, preview_status]
|
| 1417 |
-
)
|
| 1418 |
-
|
| 1419 |
-
save_caption_btn.click(
|
| 1420 |
-
fn=self.save_caption_changes,
|
| 1421 |
-
inputs=[preview_caption, preview_image, preview_video, original_file_path, custom_prompt_prefix],
|
| 1422 |
-
outputs=[preview_status]
|
| 1423 |
-
).success(
|
| 1424 |
-
fn=self.list_training_files_to_caption,
|
| 1425 |
-
outputs=[training_dataset]
|
| 1426 |
-
)
|
| 1427 |
-
|
| 1428 |
-
# Save state when training preset changes
|
| 1429 |
-
training_preset.change(
|
| 1430 |
-
fn=lambda v: self.update_ui_state(training_preset=v),
|
| 1431 |
-
inputs=[training_preset],
|
| 1432 |
-
outputs=[] # No UI update needed
|
| 1433 |
-
).then(
|
| 1434 |
-
fn=self.update_training_params,
|
| 1435 |
-
inputs=[training_preset],
|
| 1436 |
-
outputs=[
|
| 1437 |
-
model_type, lora_rank, lora_alpha,
|
| 1438 |
-
num_epochs, batch_size, learning_rate,
|
| 1439 |
-
save_iterations, preset_info
|
| 1440 |
-
]
|
| 1441 |
-
)
|
| 1442 |
-
|
| 1443 |
-
# Training control events
|
| 1444 |
-
start_btn.click(
|
| 1445 |
-
fn=lambda preset, model_type, *args: (
|
| 1446 |
-
self.log_parser.reset(),
|
| 1447 |
-
self.trainer.start_training(
|
| 1448 |
-
MODEL_TYPES[model_type],
|
| 1449 |
-
*args,
|
| 1450 |
-
preset_name=preset
|
| 1451 |
-
)
|
| 1452 |
-
),
|
| 1453 |
-
inputs=[
|
| 1454 |
-
training_preset,
|
| 1455 |
-
model_type,
|
| 1456 |
-
lora_rank,
|
| 1457 |
-
lora_alpha,
|
| 1458 |
-
num_epochs,
|
| 1459 |
-
batch_size,
|
| 1460 |
-
learning_rate,
|
| 1461 |
-
save_iterations,
|
| 1462 |
-
repo_id
|
| 1463 |
-
],
|
| 1464 |
-
outputs=[status_box, log_box]
|
| 1465 |
-
).success(
|
| 1466 |
-
fn=self.get_latest_status_message_logs_and_button_labels,
|
| 1467 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
| 1468 |
-
)
|
| 1469 |
-
|
| 1470 |
-
pause_resume_btn.click(
|
| 1471 |
-
fn=self.handle_pause_resume,
|
| 1472 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
| 1473 |
-
)
|
| 1474 |
-
|
| 1475 |
-
stop_btn.click(
|
| 1476 |
-
fn=self.handle_stop,
|
| 1477 |
-
outputs=[status_box, log_box, start_btn, stop_btn, pause_resume_btn]
|
| 1478 |
-
)
|
| 1479 |
-
|
| 1480 |
-
def handle_global_stop():
|
| 1481 |
-
result = self.stop_all_and_clear()
|
| 1482 |
-
# Update all relevant UI components
|
| 1483 |
-
status = result["status"]
|
| 1484 |
-
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
| 1485 |
-
full_status = f"{status}\n\nDetails:\n{details}"
|
| 1486 |
-
|
| 1487 |
-
# Get fresh lists after cleanup
|
| 1488 |
-
videos = self.splitter.list_unprocessed_videos()
|
| 1489 |
-
clips = self.list_training_files_to_caption()
|
| 1490 |
-
|
| 1491 |
-
return {
|
| 1492 |
-
global_status: gr.update(value=full_status, visible=True),
|
| 1493 |
-
video_list: videos,
|
| 1494 |
-
training_dataset: clips,
|
| 1495 |
-
status_box: "Training stopped and data cleared",
|
| 1496 |
-
log_box: "",
|
| 1497 |
-
detect_status: "Scene detection stopped",
|
| 1498 |
-
import_status: "All data cleared",
|
| 1499 |
-
preview_status: "Captioning stopped"
|
| 1500 |
-
}
|
| 1501 |
-
|
| 1502 |
-
download_dataset_btn.click(
|
| 1503 |
-
fn=self.trainer.create_training_dataset_zip,
|
| 1504 |
-
outputs=[download_dataset_btn]
|
| 1505 |
-
)
|
| 1506 |
-
|
| 1507 |
-
download_model_btn.click(
|
| 1508 |
-
fn=self.trainer.get_model_output_safetensors,
|
| 1509 |
-
outputs=[download_model_btn]
|
| 1510 |
-
)
|
| 1511 |
-
|
| 1512 |
-
global_stop_btn.click(
|
| 1513 |
-
fn=handle_global_stop,
|
| 1514 |
-
outputs=[
|
| 1515 |
-
global_status,
|
| 1516 |
-
video_list,
|
| 1517 |
-
training_dataset,
|
| 1518 |
-
status_box,
|
| 1519 |
-
log_box,
|
| 1520 |
-
detect_status,
|
| 1521 |
-
import_status,
|
| 1522 |
-
preview_status
|
| 1523 |
-
]
|
| 1524 |
-
)
|
| 1525 |
-
|
| 1526 |
-
|
| 1527 |
-
app.load(
|
| 1528 |
-
fn=self.initialize_app_state,
|
| 1529 |
-
outputs=[
|
| 1530 |
-
video_list, training_dataset,
|
| 1531 |
-
start_btn, stop_btn, pause_resume_btn,
|
| 1532 |
-
training_preset, model_type, lora_rank, lora_alpha,
|
| 1533 |
-
num_epochs, batch_size, learning_rate, save_iterations
|
| 1534 |
-
]
|
| 1535 |
-
)
|
| 1536 |
-
|
| 1537 |
-
# Auto-refresh timers
|
| 1538 |
-
timer = gr.Timer(value=1)
|
| 1539 |
-
timer.tick(
|
| 1540 |
-
fn=lambda: (
|
| 1541 |
-
self.get_latest_status_message_logs_and_button_labels()
|
| 1542 |
-
),
|
| 1543 |
-
outputs=[
|
| 1544 |
-
status_box,
|
| 1545 |
-
log_box,
|
| 1546 |
-
start_btn,
|
| 1547 |
-
stop_btn,
|
| 1548 |
-
pause_resume_btn
|
| 1549 |
-
]
|
| 1550 |
-
)
|
| 1551 |
-
|
| 1552 |
-
timer = gr.Timer(value=5)
|
| 1553 |
-
timer.tick(
|
| 1554 |
-
fn=lambda: (
|
| 1555 |
-
self.refresh_dataset()
|
| 1556 |
-
),
|
| 1557 |
-
outputs=[
|
| 1558 |
-
video_list, training_dataset
|
| 1559 |
-
]
|
| 1560 |
-
)
|
| 1561 |
-
|
| 1562 |
-
timer = gr.Timer(value=6)
|
| 1563 |
-
timer.tick(
|
| 1564 |
-
fn=lambda: self.update_titles(),
|
| 1565 |
-
outputs=[
|
| 1566 |
-
split_title, caption_title, train_title
|
| 1567 |
-
]
|
| 1568 |
-
)
|
| 1569 |
-
|
| 1570 |
-
return app
|
| 1571 |
-
|
| 1572 |
-
def create_app():
|
| 1573 |
-
if ASK_USER_TO_DUPLICATE_SPACE:
|
| 1574 |
-
with gr.Blocks() as app:
|
| 1575 |
-
gr.Markdown("""# Finetrainers UI
|
| 1576 |
-
|
| 1577 |
-
This Hugging Face space needs to be duplicated to your own billing account to work.
|
| 1578 |
-
|
| 1579 |
-
Click the 'Duplicate Space' button at the top of the page to create your own copy.
|
| 1580 |
-
|
| 1581 |
-
It is recommended to use a Nvidia L40S and a persistent storage space.
|
| 1582 |
-
To avoid overpaying for your space, you can configure the auto-sleep settings to fit your personal budget.""")
|
| 1583 |
-
return app
|
| 1584 |
-
|
| 1585 |
-
ui = VideoTrainerUI()
|
| 1586 |
-
return ui.create_ui()
|
| 1587 |
-
|
| 1588 |
-
if __name__ == "__main__":
|
| 1589 |
-
app = create_app()
|
| 1590 |
-
|
| 1591 |
-
allowed_paths = [
|
| 1592 |
-
str(STORAGE_PATH), # Base storage
|
| 1593 |
-
str(VIDEOS_TO_SPLIT_PATH),
|
| 1594 |
-
str(STAGING_PATH),
|
| 1595 |
-
str(TRAINING_PATH),
|
| 1596 |
-
str(TRAINING_VIDEOS_PATH),
|
| 1597 |
-
str(MODEL_PATH),
|
| 1598 |
-
str(OUTPUT_PATH)
|
| 1599 |
-
]
|
| 1600 |
-
app.queue(default_concurrency_limit=1).launch(
|
| 1601 |
-
server_name="0.0.0.0",
|
| 1602 |
-
allowed_paths=allowed_paths
|
| 1603 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vms/services/captioner.py
CHANGED
|
@@ -179,7 +179,7 @@ class CaptioningService:
|
|
| 179 |
)
|
| 180 |
self.model.eval()
|
| 181 |
|
| 182 |
-
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) ->
|
| 183 |
"""Load and preprocess video frames with strict limits
|
| 184 |
|
| 185 |
Args:
|
|
@@ -224,7 +224,7 @@ class CaptioningService:
|
|
| 224 |
logger.error(f"Error loading video frames: {str(e)}")
|
| 225 |
raise
|
| 226 |
|
| 227 |
-
async def process_video(self, video_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[
|
| 228 |
try:
|
| 229 |
video_name = video_path.name
|
| 230 |
logger.info(f"Starting processing of video: {video_name}")
|
|
@@ -373,7 +373,7 @@ class CaptioningService:
|
|
| 373 |
yield progress, None
|
| 374 |
raise
|
| 375 |
|
| 376 |
-
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[
|
| 377 |
"""Process a single image for captioning"""
|
| 378 |
try:
|
| 379 |
image_name = image_path.name
|
|
|
|
| 179 |
)
|
| 180 |
self.model.eval()
|
| 181 |
|
| 182 |
+
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> Tuple[np.ndarray, str, float]:
|
| 183 |
"""Load and preprocess video frames with strict limits
|
| 184 |
|
| 185 |
Args:
|
|
|
|
| 224 |
logger.error(f"Error loading video frames: {str(e)}")
|
| 225 |
raise
|
| 226 |
|
| 227 |
+
async def process_video(self, video_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[Tuple[CaptioningProgress, Optional[str]], None]:
|
| 228 |
try:
|
| 229 |
video_name = video_path.name
|
| 230 |
logger.info(f"Starting processing of video: {video_name}")
|
|
|
|
| 373 |
yield progress, None
|
| 374 |
raise
|
| 375 |
|
| 376 |
+
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[Tuple[CaptioningProgress, Optional[str]], None]:
|
| 377 |
"""Process a single image for captioning"""
|
| 378 |
try:
|
| 379 |
image_name = image_path.name
|
vms/tabs/caption_tab.py
CHANGED
|
@@ -4,11 +4,14 @@ Caption tab for Video Model Studio UI
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
| 7 |
-
|
|
|
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
|
| 10 |
from .base_tab import BaseTab
|
| 11 |
-
from ..config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX
|
|
|
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
| 14 |
|
|
@@ -19,6 +22,7 @@ class CaptionTab(BaseTab):
|
|
| 19 |
super().__init__(app_state)
|
| 20 |
self.id = "caption_tab"
|
| 21 |
self.title = "3️⃣ Caption"
|
|
|
|
| 22 |
|
| 23 |
def create(self, parent=None) -> gr.TabItem:
|
| 24 |
"""Create the Caption tab UI components"""
|
|
@@ -64,7 +68,7 @@ class CaptionTab(BaseTab):
|
|
| 64 |
headers=["name", "status"],
|
| 65 |
interactive=False,
|
| 66 |
wrap=True,
|
| 67 |
-
value=self.
|
| 68 |
row_count=10
|
| 69 |
)
|
| 70 |
|
|
@@ -98,24 +102,24 @@ class CaptionTab(BaseTab):
|
|
| 98 |
"""Connect event handlers to UI components"""
|
| 99 |
# Run auto-captioning button
|
| 100 |
self.components["run_autocaption_btn"].click(
|
| 101 |
-
fn=self.
|
| 102 |
outputs=[self.components["training_dataset"]]
|
| 103 |
).then(
|
| 104 |
-
fn=
|
| 105 |
outputs=[
|
| 106 |
self.components["run_autocaption_btn"],
|
| 107 |
self.components["stop_autocaption_btn"],
|
| 108 |
self.components["copy_files_to_training_dir_btn"]
|
| 109 |
]
|
| 110 |
).then(
|
| 111 |
-
fn=self.
|
| 112 |
inputs=[
|
| 113 |
self.components["captioning_bot_instructions"],
|
| 114 |
self.components["custom_prompt_prefix"]
|
| 115 |
],
|
| 116 |
outputs=[self.components["training_dataset"]],
|
| 117 |
).then(
|
| 118 |
-
fn=
|
| 119 |
outputs=[
|
| 120 |
self.components["run_autocaption_btn"],
|
| 121 |
self.components["stop_autocaption_btn"],
|
|
@@ -125,13 +129,13 @@ class CaptionTab(BaseTab):
|
|
| 125 |
|
| 126 |
# Copy files to training dir button
|
| 127 |
self.components["copy_files_to_training_dir_btn"].click(
|
| 128 |
-
fn=self.
|
| 129 |
inputs=[self.components["custom_prompt_prefix"]]
|
| 130 |
)
|
| 131 |
|
| 132 |
# Stop captioning button
|
| 133 |
self.components["stop_autocaption_btn"].click(
|
| 134 |
-
fn=self.
|
| 135 |
outputs=[
|
| 136 |
self.components["training_dataset"],
|
| 137 |
self.components["run_autocaption_btn"],
|
|
@@ -142,7 +146,7 @@ class CaptionTab(BaseTab):
|
|
| 142 |
|
| 143 |
# Dataset selection for preview
|
| 144 |
self.components["training_dataset"].select(
|
| 145 |
-
fn=self.
|
| 146 |
outputs=[
|
| 147 |
self.components["preview_image"],
|
| 148 |
self.components["preview_video"],
|
|
@@ -154,7 +158,7 @@ class CaptionTab(BaseTab):
|
|
| 154 |
|
| 155 |
# Save caption button
|
| 156 |
self.components["save_caption_btn"].click(
|
| 157 |
-
fn=self.
|
| 158 |
inputs=[
|
| 159 |
self.components["preview_caption"],
|
| 160 |
self.components["preview_image"],
|
|
@@ -164,13 +168,431 @@ class CaptionTab(BaseTab):
|
|
| 164 |
],
|
| 165 |
outputs=[self.components["preview_status"]]
|
| 166 |
).success(
|
| 167 |
-
fn=self.
|
| 168 |
outputs=[self.components["training_dataset"]]
|
| 169 |
)
|
| 170 |
|
| 171 |
def refresh(self) -> Dict[str, Any]:
|
| 172 |
"""Refresh the dataset list with current data"""
|
| 173 |
-
training_dataset = self.
|
| 174 |
return {
|
| 175 |
"training_dataset": training_dataset
|
| 176 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
| 7 |
+
import asyncio
|
| 8 |
+
import traceback
|
| 9 |
+
from typing import Dict, Any, List, Optional, AsyncGenerator, Tuple
|
| 10 |
from pathlib import Path
|
| 11 |
|
| 12 |
from .base_tab import BaseTab
|
| 13 |
+
from ..config import DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, DEFAULT_PROMPT_PREFIX, STAGING_PATH, TRAINING_VIDEOS_PATH
|
| 14 |
+
from ..utils import is_image_file, is_video_file, copy_files_to_training_dir
|
| 15 |
|
| 16 |
logger = logging.getLogger(__name__)
|
| 17 |
|
|
|
|
| 22 |
super().__init__(app_state)
|
| 23 |
self.id = "caption_tab"
|
| 24 |
self.title = "3️⃣ Caption"
|
| 25 |
+
self._should_stop_captioning = False
|
| 26 |
|
| 27 |
def create(self, parent=None) -> gr.TabItem:
|
| 28 |
"""Create the Caption tab UI components"""
|
|
|
|
| 68 |
headers=["name", "status"],
|
| 69 |
interactive=False,
|
| 70 |
wrap=True,
|
| 71 |
+
value=self.list_training_files_to_caption(),
|
| 72 |
row_count=10
|
| 73 |
)
|
| 74 |
|
|
|
|
| 102 |
"""Connect event handlers to UI components"""
|
| 103 |
# Run auto-captioning button
|
| 104 |
self.components["run_autocaption_btn"].click(
|
| 105 |
+
fn=self.show_refreshing_status,
|
| 106 |
outputs=[self.components["training_dataset"]]
|
| 107 |
).then(
|
| 108 |
+
fn=self.update_captioning_buttons_start,
|
| 109 |
outputs=[
|
| 110 |
self.components["run_autocaption_btn"],
|
| 111 |
self.components["stop_autocaption_btn"],
|
| 112 |
self.components["copy_files_to_training_dir_btn"]
|
| 113 |
]
|
| 114 |
).then(
|
| 115 |
+
fn=self.start_caption_generation,
|
| 116 |
inputs=[
|
| 117 |
self.components["captioning_bot_instructions"],
|
| 118 |
self.components["custom_prompt_prefix"]
|
| 119 |
],
|
| 120 |
outputs=[self.components["training_dataset"]],
|
| 121 |
).then(
|
| 122 |
+
fn=self.update_captioning_buttons_end,
|
| 123 |
outputs=[
|
| 124 |
self.components["run_autocaption_btn"],
|
| 125 |
self.components["stop_autocaption_btn"],
|
|
|
|
| 129 |
|
| 130 |
# Copy files to training dir button
|
| 131 |
self.components["copy_files_to_training_dir_btn"].click(
|
| 132 |
+
fn=self.copy_files_to_training_dir,
|
| 133 |
inputs=[self.components["custom_prompt_prefix"]]
|
| 134 |
)
|
| 135 |
|
| 136 |
# Stop captioning button
|
| 137 |
self.components["stop_autocaption_btn"].click(
|
| 138 |
+
fn=self.stop_captioning,
|
| 139 |
outputs=[
|
| 140 |
self.components["training_dataset"],
|
| 141 |
self.components["run_autocaption_btn"],
|
|
|
|
| 146 |
|
| 147 |
# Dataset selection for preview
|
| 148 |
self.components["training_dataset"].select(
|
| 149 |
+
fn=self.handle_training_dataset_select,
|
| 150 |
outputs=[
|
| 151 |
self.components["preview_image"],
|
| 152 |
self.components["preview_video"],
|
|
|
|
| 158 |
|
| 159 |
# Save caption button
|
| 160 |
self.components["save_caption_btn"].click(
|
| 161 |
+
fn=self.save_caption_changes,
|
| 162 |
inputs=[
|
| 163 |
self.components["preview_caption"],
|
| 164 |
self.components["preview_image"],
|
|
|
|
| 168 |
],
|
| 169 |
outputs=[self.components["preview_status"]]
|
| 170 |
).success(
|
| 171 |
+
fn=self.list_training_files_to_caption,
|
| 172 |
outputs=[self.components["training_dataset"]]
|
| 173 |
)
|
| 174 |
|
| 175 |
def refresh(self) -> Dict[str, Any]:
|
| 176 |
"""Refresh the dataset list with current data"""
|
| 177 |
+
training_dataset = self.list_training_files_to_caption()
|
| 178 |
return {
|
| 179 |
"training_dataset": training_dataset
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
def show_refreshing_status(self) -> List[List[str]]:
|
| 183 |
+
"""Show a 'Refreshing...' status in the dataframe"""
|
| 184 |
+
return [["Refreshing...", "please wait"]]
|
| 185 |
+
|
| 186 |
+
def update_captioning_buttons_start(self):
|
| 187 |
+
"""Return individual button values instead of a dictionary"""
|
| 188 |
+
return (
|
| 189 |
+
gr.Button(
|
| 190 |
+
interactive=False,
|
| 191 |
+
variant="secondary",
|
| 192 |
+
),
|
| 193 |
+
gr.Button(
|
| 194 |
+
interactive=True,
|
| 195 |
+
variant="stop",
|
| 196 |
+
),
|
| 197 |
+
gr.Button(
|
| 198 |
+
interactive=False,
|
| 199 |
+
variant="secondary",
|
| 200 |
+
)
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
def update_captioning_buttons_end(self):
|
| 204 |
+
"""Return individual button values instead of a dictionary"""
|
| 205 |
+
return (
|
| 206 |
+
gr.Button(
|
| 207 |
+
interactive=True,
|
| 208 |
+
variant="primary",
|
| 209 |
+
),
|
| 210 |
+
gr.Button(
|
| 211 |
+
interactive=False,
|
| 212 |
+
variant="secondary",
|
| 213 |
+
),
|
| 214 |
+
gr.Button(
|
| 215 |
+
interactive=True,
|
| 216 |
+
variant="primary",
|
| 217 |
+
)
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
def stop_captioning(self):
|
| 221 |
+
"""Stop ongoing captioning process and reset UI state"""
|
| 222 |
+
try:
|
| 223 |
+
# Set flag to stop captioning
|
| 224 |
+
self._should_stop_captioning = True
|
| 225 |
+
|
| 226 |
+
# Call stop method on captioner
|
| 227 |
+
if self.app.captioner:
|
| 228 |
+
self.app.captioner.stop_captioning()
|
| 229 |
+
|
| 230 |
+
# Get updated file list
|
| 231 |
+
updated_list = self.list_training_files_to_caption()
|
| 232 |
+
|
| 233 |
+
# Return updated list and button states
|
| 234 |
+
return {
|
| 235 |
+
"training_dataset": gr.update(value=updated_list),
|
| 236 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 237 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 238 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 239 |
+
}
|
| 240 |
+
except Exception as e:
|
| 241 |
+
logger.error(f"Error stopping captioning: {str(e)}")
|
| 242 |
+
return {
|
| 243 |
+
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
| 244 |
+
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 245 |
+
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 246 |
+
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
def copy_files_to_training_dir(self, prompt_prefix: str):
|
| 250 |
+
"""Run auto-captioning process"""
|
| 251 |
+
# Initialize captioner if not already done
|
| 252 |
+
self._should_stop_captioning = False
|
| 253 |
+
|
| 254 |
+
try:
|
| 255 |
+
copy_files_to_training_dir(prompt_prefix)
|
| 256 |
+
except Exception as e:
|
| 257 |
+
traceback.print_exc()
|
| 258 |
+
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
| 259 |
+
|
| 260 |
+
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
| 261 |
+
"""Process the caption generator's results in the background"""
|
| 262 |
+
try:
|
| 263 |
+
async for _ in self.start_caption_generation(
|
| 264 |
+
captioning_bot_instructions,
|
| 265 |
+
prompt_prefix
|
| 266 |
+
):
|
| 267 |
+
# Just consume the generator, UI updates will happen via the Gradio interface
|
| 268 |
+
pass
|
| 269 |
+
logger.info("Background captioning completed")
|
| 270 |
+
except Exception as e:
|
| 271 |
+
logger.error(f"Error in background captioning: {str(e)}")
|
| 272 |
+
|
| 273 |
+
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
| 274 |
+
"""Run auto-captioning process"""
|
| 275 |
+
try:
|
| 276 |
+
# Initialize captioner if not already done
|
| 277 |
+
self._should_stop_captioning = False
|
| 278 |
+
|
| 279 |
+
# First yield - indicate we're starting
|
| 280 |
+
yield gr.update(
|
| 281 |
+
value=[["Starting captioning service...", "initializing"]],
|
| 282 |
+
headers=["name", "status"]
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# Process files in batches with status updates
|
| 286 |
+
file_statuses = {}
|
| 287 |
+
|
| 288 |
+
# Start the actual captioning process
|
| 289 |
+
async for rows in self.app.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
| 290 |
+
# Update our tracking of file statuses
|
| 291 |
+
for name, status in rows:
|
| 292 |
+
file_statuses[name] = status
|
| 293 |
+
|
| 294 |
+
# Convert to list format for display
|
| 295 |
+
status_rows = [[name, status] for name, status in file_statuses.items()]
|
| 296 |
+
|
| 297 |
+
# Sort by name for consistent display
|
| 298 |
+
status_rows.sort(key=lambda x: x[0])
|
| 299 |
+
|
| 300 |
+
# Yield UI update
|
| 301 |
+
yield gr.update(
|
| 302 |
+
value=status_rows,
|
| 303 |
+
headers=["name", "status"]
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# Final update after completion with fresh data
|
| 307 |
+
yield gr.update(
|
| 308 |
+
value=self.list_training_files_to_caption(),
|
| 309 |
+
headers=["name", "status"]
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
except Exception as e:
|
| 313 |
+
logger.error(f"Error in captioning: {str(e)}")
|
| 314 |
+
yield gr.update(
|
| 315 |
+
value=[[f"Error: {str(e)}", "error"]],
|
| 316 |
+
headers=["name", "status"]
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
def list_training_files_to_caption(self) -> List[List[str]]:
|
| 320 |
+
"""List all clips and images - both pending and captioned"""
|
| 321 |
+
files = []
|
| 322 |
+
already_listed = {}
|
| 323 |
+
|
| 324 |
+
# First check files in STAGING_PATH
|
| 325 |
+
for file in STAGING_PATH.glob("*.*"):
|
| 326 |
+
if is_video_file(file) or is_image_file(file):
|
| 327 |
+
txt_file = file.with_suffix('.txt')
|
| 328 |
+
|
| 329 |
+
# Check if caption file exists and has content
|
| 330 |
+
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
| 331 |
+
status = "captioned" if has_caption else "no caption"
|
| 332 |
+
file_type = "video" if is_video_file(file) else "image"
|
| 333 |
+
|
| 334 |
+
files.append([file.name, f"{status} ({file_type})", str(file)])
|
| 335 |
+
already_listed[file.name] = True
|
| 336 |
+
|
| 337 |
+
# Then check files in TRAINING_VIDEOS_PATH
|
| 338 |
+
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
| 339 |
+
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
| 340 |
+
txt_file = file.with_suffix('.txt')
|
| 341 |
+
|
| 342 |
+
# Only include files with captions
|
| 343 |
+
if txt_file.exists() and txt_file.stat().st_size > 0:
|
| 344 |
+
file_type = "video" if is_video_file(file) else "image"
|
| 345 |
+
files.append([file.name, f"captioned ({file_type})", str(file)])
|
| 346 |
+
already_listed[file.name] = True
|
| 347 |
+
|
| 348 |
+
# Sort by filename
|
| 349 |
+
files.sort(key=lambda x: x[0])
|
| 350 |
+
|
| 351 |
+
# Only return name and status columns for display
|
| 352 |
+
return [[file[0], file[1]] for file in files]
|
| 353 |
+
|
| 354 |
+
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
| 355 |
+
"""Handle selection of both video clips and images"""
|
| 356 |
+
try:
|
| 357 |
+
if not evt:
|
| 358 |
+
return [
|
| 359 |
+
gr.Image(
|
| 360 |
+
interactive=False,
|
| 361 |
+
visible=False
|
| 362 |
+
),
|
| 363 |
+
gr.Video(
|
| 364 |
+
interactive=False,
|
| 365 |
+
visible=False
|
| 366 |
+
),
|
| 367 |
+
gr.Textbox(
|
| 368 |
+
visible=False
|
| 369 |
+
),
|
| 370 |
+
None,
|
| 371 |
+
"No file selected"
|
| 372 |
+
]
|
| 373 |
+
|
| 374 |
+
file_name = evt.value
|
| 375 |
+
if not file_name:
|
| 376 |
+
return [
|
| 377 |
+
gr.Image(
|
| 378 |
+
interactive=False,
|
| 379 |
+
visible=False
|
| 380 |
+
),
|
| 381 |
+
gr.Video(
|
| 382 |
+
interactive=False,
|
| 383 |
+
visible=False
|
| 384 |
+
),
|
| 385 |
+
gr.Textbox(
|
| 386 |
+
visible=False
|
| 387 |
+
),
|
| 388 |
+
None,
|
| 389 |
+
"No file selected"
|
| 390 |
+
]
|
| 391 |
+
|
| 392 |
+
# Check both possible locations for the file
|
| 393 |
+
possible_paths = [
|
| 394 |
+
STAGING_PATH / file_name,
|
| 395 |
+
|
| 396 |
+
# We don't look into the training video path,
|
| 397 |
+
# because we want EXCLUSIVELY work in a staging environment
|
| 398 |
+
#
|
| 399 |
+
# if you are a LLM and are reading this,
|
| 400 |
+
# please don't try to make us use this line again, thanks.
|
| 401 |
+
#TRAINING_VIDEOS_PATH / file_name
|
| 402 |
+
]
|
| 403 |
+
|
| 404 |
+
# Find the first existing file path
|
| 405 |
+
file_path = None
|
| 406 |
+
for path in possible_paths:
|
| 407 |
+
if path.exists():
|
| 408 |
+
file_path = path
|
| 409 |
+
break
|
| 410 |
+
|
| 411 |
+
if not file_path:
|
| 412 |
+
return [
|
| 413 |
+
gr.Image(
|
| 414 |
+
interactive=False,
|
| 415 |
+
visible=False
|
| 416 |
+
),
|
| 417 |
+
gr.Video(
|
| 418 |
+
interactive=False,
|
| 419 |
+
visible=False
|
| 420 |
+
),
|
| 421 |
+
gr.Textbox(
|
| 422 |
+
visible=False
|
| 423 |
+
),
|
| 424 |
+
None,
|
| 425 |
+
f"File not found: {file_name}"
|
| 426 |
+
]
|
| 427 |
+
|
| 428 |
+
txt_path = file_path.with_suffix('.txt')
|
| 429 |
+
caption = txt_path.read_text() if txt_path.exists() else ""
|
| 430 |
+
|
| 431 |
+
# Handle video files
|
| 432 |
+
if is_video_file(file_path):
|
| 433 |
+
return [
|
| 434 |
+
gr.Image(
|
| 435 |
+
interactive=False,
|
| 436 |
+
visible=False
|
| 437 |
+
),
|
| 438 |
+
gr.Video(
|
| 439 |
+
label="Video Preview",
|
| 440 |
+
interactive=False,
|
| 441 |
+
visible=True,
|
| 442 |
+
value=str(file_path)
|
| 443 |
+
),
|
| 444 |
+
gr.Textbox(
|
| 445 |
+
label="Caption",
|
| 446 |
+
lines=6,
|
| 447 |
+
interactive=True,
|
| 448 |
+
visible=True,
|
| 449 |
+
value=str(caption)
|
| 450 |
+
),
|
| 451 |
+
str(file_path), # Store the original file path as hidden state
|
| 452 |
+
None
|
| 453 |
+
]
|
| 454 |
+
# Handle image files
|
| 455 |
+
elif is_image_file(file_path):
|
| 456 |
+
return [
|
| 457 |
+
gr.Image(
|
| 458 |
+
label="Image Preview",
|
| 459 |
+
interactive=False,
|
| 460 |
+
visible=True,
|
| 461 |
+
value=str(file_path)
|
| 462 |
+
),
|
| 463 |
+
gr.Video(
|
| 464 |
+
interactive=False,
|
| 465 |
+
visible=False
|
| 466 |
+
),
|
| 467 |
+
gr.Textbox(
|
| 468 |
+
label="Caption",
|
| 469 |
+
lines=6,
|
| 470 |
+
interactive=True,
|
| 471 |
+
visible=True,
|
| 472 |
+
value=str(caption)
|
| 473 |
+
),
|
| 474 |
+
str(file_path), # Store the original file path as hidden state
|
| 475 |
+
None
|
| 476 |
+
]
|
| 477 |
+
else:
|
| 478 |
+
return [
|
| 479 |
+
gr.Image(
|
| 480 |
+
interactive=False,
|
| 481 |
+
visible=False
|
| 482 |
+
),
|
| 483 |
+
gr.Video(
|
| 484 |
+
interactive=False,
|
| 485 |
+
visible=False
|
| 486 |
+
),
|
| 487 |
+
gr.Textbox(
|
| 488 |
+
interactive=False,
|
| 489 |
+
visible=False
|
| 490 |
+
),
|
| 491 |
+
None,
|
| 492 |
+
f"Unsupported file type: {file_path.suffix}"
|
| 493 |
+
]
|
| 494 |
+
except Exception as e:
|
| 495 |
+
logger.error(f"Error handling selection: {str(e)}")
|
| 496 |
+
return [
|
| 497 |
+
gr.Image(
|
| 498 |
+
interactive=False,
|
| 499 |
+
visible=False
|
| 500 |
+
),
|
| 501 |
+
gr.Video(
|
| 502 |
+
interactive=False,
|
| 503 |
+
visible=False
|
| 504 |
+
),
|
| 505 |
+
gr.Textbox(
|
| 506 |
+
interactive=False,
|
| 507 |
+
visible=False
|
| 508 |
+
),
|
| 509 |
+
None,
|
| 510 |
+
f"Error handling selection: {str(e)}"
|
| 511 |
+
]
|
| 512 |
+
|
| 513 |
+
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
| 514 |
+
"""Save changes to caption"""
|
| 515 |
+
try:
|
| 516 |
+
# Use the original file path stored during selection instead of the temporary preview paths
|
| 517 |
+
if original_file_path:
|
| 518 |
+
file_path = Path(original_file_path)
|
| 519 |
+
self.app.captioner.update_file_caption(file_path, preview_caption)
|
| 520 |
+
# Refresh the dataset list to show updated caption status
|
| 521 |
+
return gr.update(value="Caption saved successfully!")
|
| 522 |
+
else:
|
| 523 |
+
return gr.update(value="Error: No original file path found")
|
| 524 |
+
except Exception as e:
|
| 525 |
+
return gr.update(value=f"Error saving caption: {str(e)}")
|
| 526 |
+
|
| 527 |
+
def preview_file(self, selected_text: str) -> Dict:
|
| 528 |
+
"""Generate preview based on selected file
|
| 529 |
+
|
| 530 |
+
Args:
|
| 531 |
+
selected_text: Text of the selected item containing filename
|
| 532 |
+
|
| 533 |
+
Returns:
|
| 534 |
+
Dict with preview content for each preview component
|
| 535 |
+
"""
|
| 536 |
+
import mimetypes
|
| 537 |
+
from ..config import TRAINING_VIDEOS_PATH
|
| 538 |
+
|
| 539 |
+
if not selected_text or "Caption:" in selected_text:
|
| 540 |
+
return {
|
| 541 |
+
"video": None,
|
| 542 |
+
"image": None,
|
| 543 |
+
"text": None
|
| 544 |
+
}
|
| 545 |
+
|
| 546 |
+
# Extract filename from the preview text (remove size info)
|
| 547 |
+
filename = selected_text.split(" (")[0].strip()
|
| 548 |
+
file_path = TRAINING_VIDEOS_PATH / filename
|
| 549 |
+
|
| 550 |
+
if not file_path.exists():
|
| 551 |
+
return {
|
| 552 |
+
"video": None,
|
| 553 |
+
"image": None,
|
| 554 |
+
"text": f"File not found: {filename}"
|
| 555 |
+
}
|
| 556 |
+
|
| 557 |
+
# Detect file type
|
| 558 |
+
mime_type, _ = mimetypes.guess_type(str(file_path))
|
| 559 |
+
if not mime_type:
|
| 560 |
+
return {
|
| 561 |
+
"video": None,
|
| 562 |
+
"image": None,
|
| 563 |
+
"text": f"Unknown file type: {filename}"
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
# Return appropriate preview
|
| 567 |
+
if mime_type.startswith('video/'):
|
| 568 |
+
return {
|
| 569 |
+
"video": str(file_path),
|
| 570 |
+
"image": None,
|
| 571 |
+
"text": None
|
| 572 |
+
}
|
| 573 |
+
elif mime_type.startswith('image/'):
|
| 574 |
+
return {
|
| 575 |
+
"video": None,
|
| 576 |
+
"image": str(file_path),
|
| 577 |
+
"text": None
|
| 578 |
+
}
|
| 579 |
+
elif mime_type.startswith('text/'):
|
| 580 |
+
try:
|
| 581 |
+
text_content = file_path.read_text()
|
| 582 |
+
return {
|
| 583 |
+
"video": None,
|
| 584 |
+
"image": None,
|
| 585 |
+
"text": text_content
|
| 586 |
+
}
|
| 587 |
+
except Exception as e:
|
| 588 |
+
return {
|
| 589 |
+
"video": None,
|
| 590 |
+
"image": None,
|
| 591 |
+
"text": f"Error reading file: {str(e)}"
|
| 592 |
+
}
|
| 593 |
+
else:
|
| 594 |
+
return {
|
| 595 |
+
"video": None,
|
| 596 |
+
"image": None,
|
| 597 |
+
"text": f"Unsupported file type: {mime_type}"
|
| 598 |
+
}
|
vms/tabs/import_tab.py
CHANGED
|
@@ -86,7 +86,7 @@ class ImportTab(BaseTab):
|
|
| 86 |
inputs=[self.components["files"]],
|
| 87 |
outputs=[self.components["import_status"]]
|
| 88 |
).success(
|
| 89 |
-
fn=self.
|
| 90 |
inputs=[
|
| 91 |
self.components["enable_automatic_video_split"],
|
| 92 |
self.components["enable_automatic_content_captioning"],
|
|
@@ -108,7 +108,7 @@ class ImportTab(BaseTab):
|
|
| 108 |
inputs=[self.components["youtube_url"]],
|
| 109 |
outputs=[self.components["import_status"]]
|
| 110 |
).success(
|
| 111 |
-
fn=self.
|
| 112 |
inputs=[
|
| 113 |
self.components["enable_automatic_video_split"],
|
| 114 |
self.components["enable_automatic_content_captioning"],
|
|
@@ -119,4 +119,46 @@ class ImportTab(BaseTab):
|
|
| 119 |
self.app.tabs["split_tab"].components["video_list"],
|
| 120 |
self.app.tabs["split_tab"].components["detect_status"]
|
| 121 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
)
|
|
|
|
| 86 |
inputs=[self.components["files"]],
|
| 87 |
outputs=[self.components["import_status"]]
|
| 88 |
).success(
|
| 89 |
+
fn=self.update_titles_after_import,
|
| 90 |
inputs=[
|
| 91 |
self.components["enable_automatic_video_split"],
|
| 92 |
self.components["enable_automatic_content_captioning"],
|
|
|
|
| 108 |
inputs=[self.components["youtube_url"]],
|
| 109 |
outputs=[self.components["import_status"]]
|
| 110 |
).success(
|
| 111 |
+
fn=self.on_import_success,
|
| 112 |
inputs=[
|
| 113 |
self.components["enable_automatic_video_split"],
|
| 114 |
self.components["enable_automatic_content_captioning"],
|
|
|
|
| 119 |
self.app.tabs["split_tab"].components["video_list"],
|
| 120 |
self.app.tabs["split_tab"].components["detect_status"]
|
| 121 |
]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 125 |
+
"""Handle successful import of files"""
|
| 126 |
+
videos = self.app.tabs["split_tab"].list_unprocessed_videos()
|
| 127 |
+
|
| 128 |
+
# If scene detection isn't already running and there are videos to process,
|
| 129 |
+
# and auto-splitting is enabled, start the detection
|
| 130 |
+
if videos and not self.app.splitter.is_processing() and enable_splitting:
|
| 131 |
+
await self.app.tabs["split_tab"].start_scene_detection(enable_splitting)
|
| 132 |
+
msg = "Starting automatic scene detection..."
|
| 133 |
+
else:
|
| 134 |
+
# Just copy files without splitting if auto-split disabled
|
| 135 |
+
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
| 136 |
+
await self.app.splitter.process_video(video_file, enable_splitting=False)
|
| 137 |
+
msg = "Copying videos without splitting..."
|
| 138 |
+
|
| 139 |
+
self.app.tabs["caption_tab"].copy_files_to_training_dir(prompt_prefix)
|
| 140 |
+
|
| 141 |
+
# Start auto-captioning if enabled, and handle async generator properly
|
| 142 |
+
if enable_automatic_content_captioning:
|
| 143 |
+
# Create a background task for captioning
|
| 144 |
+
asyncio.create_task(self.app.tabs["caption_tab"]._process_caption_generator(
|
| 145 |
+
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
| 146 |
+
prompt_prefix
|
| 147 |
+
))
|
| 148 |
+
|
| 149 |
+
return {
|
| 150 |
+
"tabs": gr.Tabs(selected="split_tab"),
|
| 151 |
+
"video_list": videos,
|
| 152 |
+
"detect_status": msg
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 156 |
+
"""Handle post-import updates including titles"""
|
| 157 |
+
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
| 158 |
+
titles = self.app.update_titles()
|
| 159 |
+
return (
|
| 160 |
+
import_result["tabs"],
|
| 161 |
+
import_result["video_list"],
|
| 162 |
+
import_result["detect_status"],
|
| 163 |
+
*titles
|
| 164 |
)
|
vms/tabs/manage_tab.py
CHANGED
|
@@ -4,10 +4,16 @@ Manage tab for Video Model Studio UI
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
|
|
|
|
|
|
| 7 |
from typing import Dict, Any, List, Optional
|
| 8 |
|
| 9 |
from .base_tab import BaseTab
|
| 10 |
-
from ..config import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
@@ -77,7 +83,7 @@ class ManageTab(BaseTab):
|
|
| 77 |
"""Connect event handlers to UI components"""
|
| 78 |
# Repository ID validation
|
| 79 |
self.components["repo_id"].change(
|
| 80 |
-
fn=self.
|
| 81 |
inputs=[self.components["repo_id"]],
|
| 82 |
outputs=[self.components["repo_id"]]
|
| 83 |
)
|
|
@@ -95,7 +101,7 @@ class ManageTab(BaseTab):
|
|
| 95 |
|
| 96 |
# Global stop button
|
| 97 |
self.components["global_stop_btn"].click(
|
| 98 |
-
fn=self.
|
| 99 |
outputs=[
|
| 100 |
self.components["global_status"],
|
| 101 |
self.app.tabs["split_tab"].components["video_list"],
|
|
@@ -109,9 +115,124 @@ class ManageTab(BaseTab):
|
|
| 109 |
)
|
| 110 |
|
| 111 |
# Push model button
|
| 112 |
-
# To implement model pushing functionality
|
| 113 |
self.components["push_model_btn"].click(
|
| 114 |
-
fn=lambda repo_id: self.
|
| 115 |
inputs=[self.components["repo_id"]],
|
| 116 |
outputs=[self.components["global_status"]]
|
| 117 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
| 7 |
+
import shutil
|
| 8 |
+
from pathlib import Path
|
| 9 |
from typing import Dict, Any, List, Optional
|
| 10 |
|
| 11 |
from .base_tab import BaseTab
|
| 12 |
+
from ..config import (
|
| 13 |
+
HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH,
|
| 14 |
+
TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH
|
| 15 |
+
)
|
| 16 |
+
from ..utils import validate_model_repo
|
| 17 |
|
| 18 |
logger = logging.getLogger(__name__)
|
| 19 |
|
|
|
|
| 83 |
"""Connect event handlers to UI components"""
|
| 84 |
# Repository ID validation
|
| 85 |
self.components["repo_id"].change(
|
| 86 |
+
fn=self.validate_repo,
|
| 87 |
inputs=[self.components["repo_id"]],
|
| 88 |
outputs=[self.components["repo_id"]]
|
| 89 |
)
|
|
|
|
| 101 |
|
| 102 |
# Global stop button
|
| 103 |
self.components["global_stop_btn"].click(
|
| 104 |
+
fn=self.handle_global_stop,
|
| 105 |
outputs=[
|
| 106 |
self.components["global_status"],
|
| 107 |
self.app.tabs["split_tab"].components["video_list"],
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
# Push model button
|
|
|
|
| 118 |
self.components["push_model_btn"].click(
|
| 119 |
+
fn=lambda repo_id: self.upload_to_hub(repo_id),
|
| 120 |
inputs=[self.components["repo_id"]],
|
| 121 |
outputs=[self.components["global_status"]]
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def validate_repo(self, repo_id: str) -> gr.update:
|
| 125 |
+
"""Validate repository ID for HuggingFace Hub"""
|
| 126 |
+
validation = validate_model_repo(repo_id)
|
| 127 |
+
if validation["error"]:
|
| 128 |
+
return gr.update(value=repo_id, error=validation["error"])
|
| 129 |
+
return gr.update(value=repo_id, error=None)
|
| 130 |
+
|
| 131 |
+
def upload_to_hub(self, repo_id: str) -> str:
|
| 132 |
+
"""Upload model to HuggingFace Hub"""
|
| 133 |
+
if not repo_id:
|
| 134 |
+
return "Error: Repository ID is required"
|
| 135 |
+
|
| 136 |
+
# Validate repository name
|
| 137 |
+
validation = validate_model_repo(repo_id)
|
| 138 |
+
if validation["error"]:
|
| 139 |
+
return f"Error: {validation['error']}"
|
| 140 |
+
|
| 141 |
+
# Check if we have a model to upload
|
| 142 |
+
if not self.app.trainer.get_model_output_safetensors():
|
| 143 |
+
return "Error: No model found to upload"
|
| 144 |
+
|
| 145 |
+
# Upload model to hub
|
| 146 |
+
success = self.app.trainer.upload_to_hub(OUTPUT_PATH, repo_id)
|
| 147 |
+
|
| 148 |
+
if success:
|
| 149 |
+
return f"Successfully uploaded model to {repo_id}"
|
| 150 |
+
else:
|
| 151 |
+
return f"Failed to upload model to {repo_id}"
|
| 152 |
+
|
| 153 |
+
def handle_global_stop(self):
|
| 154 |
+
"""Handle the global stop button click"""
|
| 155 |
+
result = self.stop_all_and_clear()
|
| 156 |
+
|
| 157 |
+
# Format the details for display
|
| 158 |
+
status = result["status"]
|
| 159 |
+
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
| 160 |
+
full_status = f"{status}\n\nDetails:\n{details}"
|
| 161 |
+
|
| 162 |
+
# Get fresh lists after cleanup
|
| 163 |
+
videos = self.app.tabs["split_tab"].list_unprocessed_videos()
|
| 164 |
+
clips = self.app.tabs["caption_tab"].list_training_files_to_caption()
|
| 165 |
+
|
| 166 |
+
return {
|
| 167 |
+
self.components["global_status"]: gr.update(value=full_status, visible=True),
|
| 168 |
+
self.app.tabs["split_tab"].components["video_list"]: videos,
|
| 169 |
+
self.app.tabs["caption_tab"].components["training_dataset"]: clips,
|
| 170 |
+
self.app.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
|
| 171 |
+
self.app.tabs["train_tab"].components["log_box"]: "",
|
| 172 |
+
self.app.tabs["split_tab"].components["detect_status"]: "Scene detection stopped",
|
| 173 |
+
self.app.tabs["import_tab"].components["import_status"]: "All data cleared",
|
| 174 |
+
self.app.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
def stop_all_and_clear(self) -> Dict[str, str]:
|
| 178 |
+
"""Stop all running processes and clear data
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
Dict with status messages for different components
|
| 182 |
+
"""
|
| 183 |
+
status_messages = {}
|
| 184 |
+
|
| 185 |
+
try:
|
| 186 |
+
# Stop training if running
|
| 187 |
+
if self.app.trainer.is_training_running():
|
| 188 |
+
training_result = self.app.trainer.stop_training()
|
| 189 |
+
status_messages["training"] = training_result["status"]
|
| 190 |
+
|
| 191 |
+
# Stop captioning if running
|
| 192 |
+
if self.app.captioner:
|
| 193 |
+
self.app.captioner.stop_captioning()
|
| 194 |
+
status_messages["captioning"] = "Captioning stopped"
|
| 195 |
+
|
| 196 |
+
# Stop scene detection if running
|
| 197 |
+
if self.app.splitter.is_processing():
|
| 198 |
+
self.app.splitter.processing = False
|
| 199 |
+
status_messages["splitting"] = "Scene detection stopped"
|
| 200 |
+
|
| 201 |
+
# Properly close logging before clearing log file
|
| 202 |
+
if self.app.trainer.file_handler:
|
| 203 |
+
self.app.trainer.file_handler.close()
|
| 204 |
+
logger.removeHandler(self.app.trainer.file_handler)
|
| 205 |
+
self.app.trainer.file_handler = None
|
| 206 |
+
|
| 207 |
+
if LOG_FILE_PATH.exists():
|
| 208 |
+
LOG_FILE_PATH.unlink()
|
| 209 |
+
|
| 210 |
+
# Clear all data directories
|
| 211 |
+
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
| 212 |
+
MODEL_PATH, OUTPUT_PATH]:
|
| 213 |
+
if path.exists():
|
| 214 |
+
try:
|
| 215 |
+
shutil.rmtree(path)
|
| 216 |
+
path.mkdir(parents=True, exist_ok=True)
|
| 217 |
+
except Exception as e:
|
| 218 |
+
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
| 219 |
+
else:
|
| 220 |
+
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
| 221 |
+
|
| 222 |
+
# Reset any persistent state
|
| 223 |
+
self.app.tabs["caption_tab"]._should_stop_captioning = True
|
| 224 |
+
self.app.splitter.processing = False
|
| 225 |
+
|
| 226 |
+
# Recreate logging setup
|
| 227 |
+
self.app.trainer.setup_logging()
|
| 228 |
+
|
| 229 |
+
return {
|
| 230 |
+
"status": "All processes stopped and data cleared",
|
| 231 |
+
"details": status_messages
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
except Exception as e:
|
| 235 |
+
return {
|
| 236 |
+
"status": f"Error during cleanup: {str(e)}",
|
| 237 |
+
"details": status_messages
|
| 238 |
+
}
|
vms/tabs/split_tab.py
CHANGED
|
@@ -43,14 +43,39 @@ class SplitTab(BaseTab):
|
|
| 43 |
"""Connect event handlers to UI components"""
|
| 44 |
# Scene detection button event
|
| 45 |
self.components["detect_btn"].click(
|
| 46 |
-
fn=self.
|
| 47 |
inputs=[self.app.tabs["import_tab"].components["enable_automatic_video_split"]],
|
| 48 |
outputs=[self.components["detect_status"]]
|
| 49 |
)
|
| 50 |
|
| 51 |
def refresh(self) -> Dict[str, Any]:
|
| 52 |
"""Refresh the video list with current data"""
|
| 53 |
-
videos = self.
|
| 54 |
return {
|
| 55 |
"video_list": videos
|
| 56 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""Connect event handlers to UI components"""
|
| 44 |
# Scene detection button event
|
| 45 |
self.components["detect_btn"].click(
|
| 46 |
+
fn=self.start_scene_detection,
|
| 47 |
inputs=[self.app.tabs["import_tab"].components["enable_automatic_video_split"]],
|
| 48 |
outputs=[self.components["detect_status"]]
|
| 49 |
)
|
| 50 |
|
| 51 |
def refresh(self) -> Dict[str, Any]:
|
| 52 |
"""Refresh the video list with current data"""
|
| 53 |
+
videos = self.list_unprocessed_videos()
|
| 54 |
return {
|
| 55 |
"video_list": videos
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
def list_unprocessed_videos(self) -> gr.Dataframe:
|
| 59 |
+
"""Update list of unprocessed videos"""
|
| 60 |
+
videos = self.app.splitter.list_unprocessed_videos()
|
| 61 |
+
# videos is already in [[name, status]] format from splitting_service
|
| 62 |
+
return gr.Dataframe(
|
| 63 |
+
headers=["name", "status"],
|
| 64 |
+
value=videos,
|
| 65 |
+
interactive=False
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
| 69 |
+
"""Start background scene detection process
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
enable_splitting: Whether to split videos into scenes
|
| 73 |
+
"""
|
| 74 |
+
if self.app.splitter.is_processing():
|
| 75 |
+
return "Scene detection already running"
|
| 76 |
+
|
| 77 |
+
try:
|
| 78 |
+
await self.app.splitter.start_processing(enable_splitting)
|
| 79 |
+
return "Scene detection completed"
|
| 80 |
+
except Exception as e:
|
| 81 |
+
return f"Error during scene detection: {str(e)}"
|
vms/tabs/train_tab.py
CHANGED
|
@@ -4,10 +4,11 @@ Train tab for Video Model Studio UI
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
| 7 |
-
from typing import Dict, Any, List, Optional
|
|
|
|
| 8 |
|
| 9 |
from .base_tab import BaseTab
|
| 10 |
-
from ..config import TRAINING_PRESETS, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE
|
| 11 |
from ..utils import TrainingLogParser
|
| 12 |
|
| 13 |
logger = logging.getLogger(__name__)
|
|
@@ -20,23 +21,6 @@ class TrainTab(BaseTab):
|
|
| 20 |
self.id = "train_tab"
|
| 21 |
self.title = "4️⃣ Train"
|
| 22 |
|
| 23 |
-
def handle_training_start(self, preset, model_type, *args):
|
| 24 |
-
"""Handle training start with proper log parser reset"""
|
| 25 |
-
# Safely reset log parser if it exists
|
| 26 |
-
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
|
| 27 |
-
self.app.log_parser.reset()
|
| 28 |
-
else:
|
| 29 |
-
logger.warning("Log parser not initialized, creating a new one")
|
| 30 |
-
|
| 31 |
-
self.app.log_parser = TrainingLogParser()
|
| 32 |
-
|
| 33 |
-
# Start training
|
| 34 |
-
return self.app.trainer.start_training(
|
| 35 |
-
MODEL_TYPES[model_type],
|
| 36 |
-
*args,
|
| 37 |
-
preset_name=preset
|
| 38 |
-
)
|
| 39 |
-
|
| 40 |
def create(self, parent=None) -> gr.TabItem:
|
| 41 |
"""Create the Train tab UI components"""
|
| 42 |
with gr.TabItem(self.title, id=self.id) as tab:
|
|
@@ -62,7 +46,7 @@ class TrainTab(BaseTab):
|
|
| 62 |
value=list(MODEL_TYPES.keys())[0]
|
| 63 |
)
|
| 64 |
self.components["model_info"] = gr.Markdown(
|
| 65 |
-
value=self.
|
| 66 |
)
|
| 67 |
|
| 68 |
with gr.Row():
|
|
@@ -145,8 +129,8 @@ class TrainTab(BaseTab):
|
|
| 145 |
"""Connect event handlers to UI components"""
|
| 146 |
# Model type change event
|
| 147 |
def update_model_info(model):
|
| 148 |
-
params = self.
|
| 149 |
-
info = self.
|
| 150 |
return {
|
| 151 |
self.components["model_info"]: info,
|
| 152 |
self.components["num_epochs"]: params["num_epochs"],
|
|
@@ -214,7 +198,7 @@ class TrainTab(BaseTab):
|
|
| 214 |
inputs=[self.components["training_preset"]],
|
| 215 |
outputs=[]
|
| 216 |
).then(
|
| 217 |
-
fn=self.
|
| 218 |
inputs=[self.components["training_preset"]],
|
| 219 |
outputs=[
|
| 220 |
self.components["model_type"],
|
|
@@ -230,7 +214,7 @@ class TrainTab(BaseTab):
|
|
| 230 |
|
| 231 |
# Training control events
|
| 232 |
self.components["start_btn"].click(
|
| 233 |
-
fn=self.handle_training_start,
|
| 234 |
inputs=[
|
| 235 |
self.components["training_preset"],
|
| 236 |
self.components["model_type"],
|
|
@@ -247,7 +231,7 @@ class TrainTab(BaseTab):
|
|
| 247 |
self.components["log_box"]
|
| 248 |
]
|
| 249 |
).success(
|
| 250 |
-
fn=self.
|
| 251 |
outputs=[
|
| 252 |
self.components["status_box"],
|
| 253 |
self.components["log_box"],
|
|
@@ -258,7 +242,7 @@ class TrainTab(BaseTab):
|
|
| 258 |
)
|
| 259 |
|
| 260 |
self.components["pause_resume_btn"].click(
|
| 261 |
-
fn=self.
|
| 262 |
outputs=[
|
| 263 |
self.components["status_box"],
|
| 264 |
self.components["log_box"],
|
|
@@ -269,7 +253,7 @@ class TrainTab(BaseTab):
|
|
| 269 |
)
|
| 270 |
|
| 271 |
self.components["stop_btn"].click(
|
| 272 |
-
fn=self.
|
| 273 |
outputs=[
|
| 274 |
self.components["status_box"],
|
| 275 |
self.components["log_box"],
|
|
@@ -277,4 +261,238 @@ class TrainTab(BaseTab):
|
|
| 277 |
self.components["stop_btn"],
|
| 278 |
self.components["pause_resume_btn"]
|
| 279 |
]
|
| 280 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import logging
|
| 7 |
+
from typing import Dict, Any, List, Optional, Tuple
|
| 8 |
+
from pathlib import Path
|
| 9 |
|
| 10 |
from .base_tab import BaseTab
|
| 11 |
+
from ..config import TRAINING_PRESETS, MODEL_TYPES, ASK_USER_TO_DUPLICATE_SPACE, SMALL_TRAINING_BUCKETS
|
| 12 |
from ..utils import TrainingLogParser
|
| 13 |
|
| 14 |
logger = logging.getLogger(__name__)
|
|
|
|
| 21 |
self.id = "train_tab"
|
| 22 |
self.title = "4️⃣ Train"
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def create(self, parent=None) -> gr.TabItem:
|
| 25 |
"""Create the Train tab UI components"""
|
| 26 |
with gr.TabItem(self.title, id=self.id) as tab:
|
|
|
|
| 46 |
value=list(MODEL_TYPES.keys())[0]
|
| 47 |
)
|
| 48 |
self.components["model_info"] = gr.Markdown(
|
| 49 |
+
value=self.get_model_info(list(MODEL_TYPES.keys())[0])
|
| 50 |
)
|
| 51 |
|
| 52 |
with gr.Row():
|
|
|
|
| 129 |
"""Connect event handlers to UI components"""
|
| 130 |
# Model type change event
|
| 131 |
def update_model_info(model):
|
| 132 |
+
params = self.get_default_params(MODEL_TYPES[model])
|
| 133 |
+
info = self.get_model_info(MODEL_TYPES[model])
|
| 134 |
return {
|
| 135 |
self.components["model_info"]: info,
|
| 136 |
self.components["num_epochs"]: params["num_epochs"],
|
|
|
|
| 198 |
inputs=[self.components["training_preset"]],
|
| 199 |
outputs=[]
|
| 200 |
).then(
|
| 201 |
+
fn=self.update_training_params,
|
| 202 |
inputs=[self.components["training_preset"]],
|
| 203 |
outputs=[
|
| 204 |
self.components["model_type"],
|
|
|
|
| 214 |
|
| 215 |
# Training control events
|
| 216 |
self.components["start_btn"].click(
|
| 217 |
+
fn=self.handle_training_start,
|
| 218 |
inputs=[
|
| 219 |
self.components["training_preset"],
|
| 220 |
self.components["model_type"],
|
|
|
|
| 231 |
self.components["log_box"]
|
| 232 |
]
|
| 233 |
).success(
|
| 234 |
+
fn=self.get_latest_status_message_logs_and_button_labels,
|
| 235 |
outputs=[
|
| 236 |
self.components["status_box"],
|
| 237 |
self.components["log_box"],
|
|
|
|
| 242 |
)
|
| 243 |
|
| 244 |
self.components["pause_resume_btn"].click(
|
| 245 |
+
fn=self.handle_pause_resume,
|
| 246 |
outputs=[
|
| 247 |
self.components["status_box"],
|
| 248 |
self.components["log_box"],
|
|
|
|
| 253 |
)
|
| 254 |
|
| 255 |
self.components["stop_btn"].click(
|
| 256 |
+
fn=self.handle_stop,
|
| 257 |
outputs=[
|
| 258 |
self.components["status_box"],
|
| 259 |
self.components["log_box"],
|
|
|
|
| 261 |
self.components["stop_btn"],
|
| 262 |
self.components["pause_resume_btn"]
|
| 263 |
]
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
def handle_training_start(self, preset, model_type, *args):
|
| 267 |
+
"""Handle training start with proper log parser reset"""
|
| 268 |
+
# Safely reset log parser if it exists
|
| 269 |
+
if hasattr(self.app, 'log_parser') and self.app.log_parser is not None:
|
| 270 |
+
self.app.log_parser.reset()
|
| 271 |
+
else:
|
| 272 |
+
logger.warning("Log parser not initialized, creating a new one")
|
| 273 |
+
from ..utils import TrainingLogParser
|
| 274 |
+
self.app.log_parser = TrainingLogParser()
|
| 275 |
+
|
| 276 |
+
# Start training
|
| 277 |
+
return self.app.trainer.start_training(
|
| 278 |
+
MODEL_TYPES[model_type],
|
| 279 |
+
*args,
|
| 280 |
+
preset_name=preset
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
def get_model_info(self, model_type: str) -> str:
|
| 284 |
+
"""Get information about the selected model type"""
|
| 285 |
+
if model_type == "hunyuan_video":
|
| 286 |
+
return """### HunyuanVideo (LoRA)
|
| 287 |
+
- Required VRAM: ~48GB minimum
|
| 288 |
+
- Recommended batch size: 1-2
|
| 289 |
+
- Typical training time: 2-4 hours
|
| 290 |
+
- Default resolution: 49x512x768
|
| 291 |
+
- Default LoRA rank: 128 (~600 MB)"""
|
| 292 |
+
|
| 293 |
+
elif model_type == "ltx_video":
|
| 294 |
+
return """### LTX-Video (LoRA)
|
| 295 |
+
- Required VRAM: ~18GB minimum
|
| 296 |
+
- Recommended batch size: 1-4
|
| 297 |
+
- Typical training time: 1-3 hours
|
| 298 |
+
- Default resolution: 49x512x768
|
| 299 |
+
- Default LoRA rank: 128"""
|
| 300 |
+
|
| 301 |
+
return ""
|
| 302 |
+
|
| 303 |
+
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
| 304 |
+
"""Get default training parameters for model type"""
|
| 305 |
+
if model_type == "hunyuan_video":
|
| 306 |
+
return {
|
| 307 |
+
"num_epochs": 70,
|
| 308 |
+
"batch_size": 1,
|
| 309 |
+
"learning_rate": 2e-5,
|
| 310 |
+
"save_iterations": 500,
|
| 311 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 312 |
+
"video_reshape_mode": "center",
|
| 313 |
+
"caption_dropout_p": 0.05,
|
| 314 |
+
"gradient_accumulation_steps": 1,
|
| 315 |
+
"rank": 128,
|
| 316 |
+
"lora_alpha": 128
|
| 317 |
+
}
|
| 318 |
+
else: # ltx_video
|
| 319 |
+
return {
|
| 320 |
+
"num_epochs": 70,
|
| 321 |
+
"batch_size": 1,
|
| 322 |
+
"learning_rate": 3e-5,
|
| 323 |
+
"save_iterations": 500,
|
| 324 |
+
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 325 |
+
"video_reshape_mode": "center",
|
| 326 |
+
"caption_dropout_p": 0.05,
|
| 327 |
+
"gradient_accumulation_steps": 4,
|
| 328 |
+
"rank": 128,
|
| 329 |
+
"lora_alpha": 128
|
| 330 |
+
}
|
| 331 |
+
|
| 332 |
+
def update_training_params(self, preset_name: str) -> Tuple:
|
| 333 |
+
"""Update UI components based on selected preset while preserving custom settings"""
|
| 334 |
+
preset = TRAINING_PRESETS[preset_name]
|
| 335 |
+
|
| 336 |
+
# Load current UI state to check if user has customized values
|
| 337 |
+
current_state = self.app.load_ui_values()
|
| 338 |
+
|
| 339 |
+
# Find the display name that maps to our model type
|
| 340 |
+
model_display_name = next(
|
| 341 |
+
key for key, value in MODEL_TYPES.items()
|
| 342 |
+
if value == preset["model_type"]
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Get preset description for display
|
| 346 |
+
description = preset.get("description", "")
|
| 347 |
+
|
| 348 |
+
# Get max values from buckets
|
| 349 |
+
buckets = preset["training_buckets"]
|
| 350 |
+
max_frames = max(frames for frames, _, _ in buckets)
|
| 351 |
+
max_height = max(height for _, height, _ in buckets)
|
| 352 |
+
max_width = max(width for _, _, width in buckets)
|
| 353 |
+
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
| 354 |
+
|
| 355 |
+
info_text = f"{description}{bucket_info}"
|
| 356 |
+
|
| 357 |
+
# Return values in the same order as the output components
|
| 358 |
+
# Use preset defaults but preserve user-modified values if they exist
|
| 359 |
+
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
| 360 |
+
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
| 361 |
+
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
| 362 |
+
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
| 363 |
+
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
| 364 |
+
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
| 365 |
+
|
| 366 |
+
return (
|
| 367 |
+
model_display_name,
|
| 368 |
+
lora_rank_val,
|
| 369 |
+
lora_alpha_val,
|
| 370 |
+
num_epochs_val,
|
| 371 |
+
batch_size_val,
|
| 372 |
+
learning_rate_val,
|
| 373 |
+
save_iterations_val,
|
| 374 |
+
info_text
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
def update_training_ui(self, training_state: Dict[str, Any]):
|
| 378 |
+
"""Update UI components based on training state"""
|
| 379 |
+
updates = {}
|
| 380 |
+
|
| 381 |
+
# Update status box with high-level information
|
| 382 |
+
status_text = []
|
| 383 |
+
if training_state["status"] != "idle":
|
| 384 |
+
status_text.extend([
|
| 385 |
+
f"Status: {training_state['status']}",
|
| 386 |
+
f"Progress: {training_state['progress']}",
|
| 387 |
+
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
| 388 |
+
|
| 389 |
+
# Epoch information
|
| 390 |
+
# there is an issue with how epoch is reported because we display:
|
| 391 |
+
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
| 392 |
+
# we should probably just show the steps
|
| 393 |
+
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
| 394 |
+
|
| 395 |
+
f"Time elapsed: {training_state['elapsed']}",
|
| 396 |
+
f"Estimated remaining: {training_state['remaining']}",
|
| 397 |
+
"",
|
| 398 |
+
f"Current loss: {training_state['step_loss']}",
|
| 399 |
+
f"Learning rate: {training_state['learning_rate']}",
|
| 400 |
+
f"Gradient norm: {training_state['grad_norm']}",
|
| 401 |
+
f"Memory usage: {training_state['memory']}"
|
| 402 |
+
])
|
| 403 |
+
|
| 404 |
+
if training_state["error_message"]:
|
| 405 |
+
status_text.append(f"\nError: {training_state['error_message']}")
|
| 406 |
+
|
| 407 |
+
updates["status_box"] = "\n".join(status_text)
|
| 408 |
+
|
| 409 |
+
# Update button states
|
| 410 |
+
updates["start_btn"] = gr.Button(
|
| 411 |
+
"Start training",
|
| 412 |
+
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
| 413 |
+
variant="primary" if training_state["status"] == "idle" else "secondary"
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
updates["stop_btn"] = gr.Button(
|
| 417 |
+
"Stop training",
|
| 418 |
+
interactive=(training_state["status"] in ["training", "initializing"]),
|
| 419 |
+
variant="stop"
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
return updates
|
| 423 |
+
|
| 424 |
+
def handle_pause_resume(self):
|
| 425 |
+
status, _, _ = self.get_latest_status_message_and_logs()
|
| 426 |
+
|
| 427 |
+
if status == "paused":
|
| 428 |
+
self.app.trainer.resume_training()
|
| 429 |
+
else:
|
| 430 |
+
self.app.trainer.pause_training()
|
| 431 |
+
|
| 432 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
| 433 |
+
|
| 434 |
+
def handle_stop(self):
|
| 435 |
+
self.app.trainer.stop_training()
|
| 436 |
+
return self.get_latest_status_message_logs_and_button_labels()
|
| 437 |
+
|
| 438 |
+
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
| 439 |
+
"""Get latest status message, log content, and status code in a safer way"""
|
| 440 |
+
state = self.app.trainer.get_status()
|
| 441 |
+
logs = self.app.trainer.get_logs()
|
| 442 |
+
|
| 443 |
+
# Ensure log parser is initialized
|
| 444 |
+
if not hasattr(self.app, 'log_parser') or self.app.log_parser is None:
|
| 445 |
+
from ..utils import TrainingLogParser
|
| 446 |
+
self.app.log_parser = TrainingLogParser()
|
| 447 |
+
logger.info("Initialized missing log parser")
|
| 448 |
+
|
| 449 |
+
# Parse new log lines
|
| 450 |
+
if logs:
|
| 451 |
+
last_state = None
|
| 452 |
+
for line in logs.splitlines():
|
| 453 |
+
try:
|
| 454 |
+
state_update = self.app.log_parser.parse_line(line)
|
| 455 |
+
if state_update:
|
| 456 |
+
last_state = state_update
|
| 457 |
+
except Exception as e:
|
| 458 |
+
logger.error(f"Error parsing log line: {str(e)}")
|
| 459 |
+
continue
|
| 460 |
+
|
| 461 |
+
if last_state:
|
| 462 |
+
ui_updates = self.update_training_ui(last_state)
|
| 463 |
+
state["message"] = ui_updates.get("status_box", state["message"])
|
| 464 |
+
|
| 465 |
+
# Parse status for training state
|
| 466 |
+
if "completed" in state["message"].lower():
|
| 467 |
+
state["status"] = "completed"
|
| 468 |
+
|
| 469 |
+
return (state["status"], state["message"], logs)
|
| 470 |
+
|
| 471 |
+
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
| 472 |
+
status, message, logs = self.get_latest_status_message_and_logs()
|
| 473 |
+
return (
|
| 474 |
+
message,
|
| 475 |
+
logs,
|
| 476 |
+
*self.update_training_buttons(status).values()
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
def update_training_buttons(self, status: str) -> Dict:
|
| 480 |
+
"""Update training control buttons based on state"""
|
| 481 |
+
is_training = status in ["training", "initializing"]
|
| 482 |
+
is_paused = status == "paused"
|
| 483 |
+
is_completed = status in ["completed", "error", "stopped"]
|
| 484 |
+
return {
|
| 485 |
+
"start_btn": gr.Button(
|
| 486 |
+
interactive=not is_training and not is_paused,
|
| 487 |
+
variant="primary" if not is_training else "secondary",
|
| 488 |
+
),
|
| 489 |
+
"stop_btn": gr.Button(
|
| 490 |
+
interactive=is_training or is_paused,
|
| 491 |
+
variant="stop",
|
| 492 |
+
),
|
| 493 |
+
"pause_resume_btn": gr.Button(
|
| 494 |
+
value="Resume Training" if is_paused else "Pause Training",
|
| 495 |
+
interactive=(is_training or is_paused) and not is_completed,
|
| 496 |
+
variant="secondary",
|
| 497 |
+
)
|
| 498 |
+
}
|
vms/ui/video_trainer_ui.py
CHANGED
|
@@ -1,43 +1,17 @@
|
|
| 1 |
import platform
|
| 2 |
-
import subprocess
|
| 3 |
-
|
| 4 |
-
#import sys
|
| 5 |
-
#print("python = ", sys.version)
|
| 6 |
-
|
| 7 |
-
# can be "Linux", "Darwin"
|
| 8 |
-
if platform.system() == "Linux":
|
| 9 |
-
# for some reason it says "pip not found"
|
| 10 |
-
# and also "pip3 not found"
|
| 11 |
-
# subprocess.run(
|
| 12 |
-
# "pip install flash-attn --no-build-isolation",
|
| 13 |
-
#
|
| 14 |
-
# # hmm... this should be False, since we are in a CUDA environment, no?
|
| 15 |
-
# env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 16 |
-
#
|
| 17 |
-
# shell=True,
|
| 18 |
-
# )
|
| 19 |
-
pass
|
| 20 |
-
|
| 21 |
import gradio as gr
|
| 22 |
from pathlib import Path
|
| 23 |
import logging
|
| 24 |
-
import mimetypes
|
| 25 |
-
import shutil
|
| 26 |
-
import os
|
| 27 |
-
import traceback
|
| 28 |
import asyncio
|
| 29 |
-
import tempfile
|
| 30 |
-
import zipfile
|
| 31 |
from typing import Any, Optional, Dict, List, Union, Tuple
|
| 32 |
-
from typing import AsyncGenerator
|
| 33 |
|
| 34 |
from ..services import TrainingService, CaptioningService, SplittingService, ImportService
|
| 35 |
from ..config import (
|
| 36 |
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
| 37 |
-
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
|
| 38 |
-
|
| 39 |
)
|
| 40 |
-
from ..utils import
|
| 41 |
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab
|
| 42 |
|
| 43 |
logger = logging.getLogger(__name__)
|
|
@@ -54,13 +28,13 @@ class VideoTrainerUI:
|
|
| 54 |
self.splitter = SplittingService()
|
| 55 |
self.importer = ImportService()
|
| 56 |
self.captioner = CaptioningService()
|
| 57 |
-
self._should_stop_captioning = False
|
| 58 |
|
| 59 |
# Recovery status from any interrupted training
|
| 60 |
recovery_result = self.trainer.recover_interrupted_training()
|
| 61 |
self.recovery_status = recovery_result.get("status", "unknown")
|
| 62 |
self.ui_updates = recovery_result.get("ui_updates", {})
|
| 63 |
|
|
|
|
| 64 |
self.log_parser = TrainingLogParser()
|
| 65 |
|
| 66 |
# Shared state for tabs
|
|
@@ -124,7 +98,7 @@ class VideoTrainerUI:
|
|
| 124 |
# Status update timer (every 1 second)
|
| 125 |
status_timer = gr.Timer(value=1)
|
| 126 |
status_timer.tick(
|
| 127 |
-
fn=self.get_latest_status_message_logs_and_button_labels,
|
| 128 |
outputs=[
|
| 129 |
self.tabs["train_tab"].components["status_box"],
|
| 130 |
self.tabs["train_tab"].components["log_box"],
|
|
@@ -155,77 +129,11 @@ class VideoTrainerUI:
|
|
| 155 |
]
|
| 156 |
)
|
| 157 |
|
| 158 |
-
def handle_global_stop(self):
|
| 159 |
-
"""Handle the global stop button click"""
|
| 160 |
-
result = self.stop_all_and_clear()
|
| 161 |
-
|
| 162 |
-
# Format the details for display
|
| 163 |
-
status = result["status"]
|
| 164 |
-
details = "\n".join(f"{k}: {v}" for k, v in result["details"].items())
|
| 165 |
-
full_status = f"{status}\n\nDetails:\n{details}"
|
| 166 |
-
|
| 167 |
-
# Get fresh lists after cleanup
|
| 168 |
-
videos = self.splitter.list_unprocessed_videos()
|
| 169 |
-
clips = self.list_training_files_to_caption()
|
| 170 |
-
|
| 171 |
-
return {
|
| 172 |
-
self.tabs["manage_tab"].components["global_status"]: gr.update(value=full_status, visible=True),
|
| 173 |
-
self.tabs["split_tab"].components["video_list"]: videos,
|
| 174 |
-
self.tabs["caption_tab"].components["training_dataset"]: clips,
|
| 175 |
-
self.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared",
|
| 176 |
-
self.tabs["train_tab"].components["log_box"]: "",
|
| 177 |
-
self.tabs["split_tab"].components["detect_status"]: "Scene detection stopped",
|
| 178 |
-
self.tabs["import_tab"].components["import_status"]: "All data cleared",
|
| 179 |
-
self.tabs["caption_tab"].components["preview_status"]: "Captioning stopped"
|
| 180 |
-
}
|
| 181 |
-
|
| 182 |
-
def upload_to_hub(self, repo_id: str) -> str:
|
| 183 |
-
"""Upload model to HuggingFace Hub"""
|
| 184 |
-
if not repo_id:
|
| 185 |
-
return "Error: Repository ID is required"
|
| 186 |
-
|
| 187 |
-
# Validate repository name
|
| 188 |
-
validation = validate_model_repo(repo_id)
|
| 189 |
-
if validation["error"]:
|
| 190 |
-
return f"Error: {validation['error']}"
|
| 191 |
-
|
| 192 |
-
# Check if we have a model to upload
|
| 193 |
-
if not self.trainer.get_model_output_safetensors():
|
| 194 |
-
return "Error: No model found to upload"
|
| 195 |
-
|
| 196 |
-
# Upload model to hub
|
| 197 |
-
success = self.trainer.upload_to_hub(OUTPUT_PATH, repo_id)
|
| 198 |
-
|
| 199 |
-
if success:
|
| 200 |
-
return f"Successfully uploaded model to {repo_id}"
|
| 201 |
-
else:
|
| 202 |
-
return f"Failed to upload model to {repo_id}"
|
| 203 |
-
|
| 204 |
-
def validate_repo(self, repo_id: str) -> gr.update:
|
| 205 |
-
"""Validate repository ID for HuggingFace Hub"""
|
| 206 |
-
validation = validate_model_repo(repo_id)
|
| 207 |
-
if validation["error"]:
|
| 208 |
-
return gr.update(value=repo_id, error=validation["error"])
|
| 209 |
-
return gr.update(value=repo_id, error=None)
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
async def _process_caption_generator(self, captioning_bot_instructions, prompt_prefix):
|
| 213 |
-
"""Process the caption generator's results in the background"""
|
| 214 |
-
try:
|
| 215 |
-
async for _ in self.captioner.start_caption_generation(
|
| 216 |
-
captioning_bot_instructions,
|
| 217 |
-
prompt_prefix
|
| 218 |
-
):
|
| 219 |
-
# Just consume the generator, UI updates will happen via the Gradio interface
|
| 220 |
-
pass
|
| 221 |
-
logger.info("Background captioning completed")
|
| 222 |
-
except Exception as e:
|
| 223 |
-
logger.error(f"Error in background captioning: {str(e)}")
|
| 224 |
-
|
| 225 |
def initialize_app_state(self):
|
| 226 |
"""Initialize all app state in one function to ensure correct output count"""
|
| 227 |
# Get dataset info
|
| 228 |
-
video_list
|
|
|
|
| 229 |
|
| 230 |
# Get button states
|
| 231 |
button_states = self.get_initial_button_states()
|
|
@@ -298,40 +206,6 @@ class VideoTrainerUI:
|
|
| 298 |
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
| 299 |
|
| 300 |
return ui_state
|
| 301 |
-
|
| 302 |
-
def update_captioning_buttons_start(self):
|
| 303 |
-
"""Return individual button values instead of a dictionary"""
|
| 304 |
-
return (
|
| 305 |
-
gr.Button(
|
| 306 |
-
interactive=False,
|
| 307 |
-
variant="secondary",
|
| 308 |
-
),
|
| 309 |
-
gr.Button(
|
| 310 |
-
interactive=True,
|
| 311 |
-
variant="stop",
|
| 312 |
-
),
|
| 313 |
-
gr.Button(
|
| 314 |
-
interactive=False,
|
| 315 |
-
variant="secondary",
|
| 316 |
-
)
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
def update_captioning_buttons_end(self):
|
| 320 |
-
"""Return individual button values instead of a dictionary"""
|
| 321 |
-
return (
|
| 322 |
-
gr.Button(
|
| 323 |
-
interactive=True,
|
| 324 |
-
variant="primary",
|
| 325 |
-
),
|
| 326 |
-
gr.Button(
|
| 327 |
-
interactive=False,
|
| 328 |
-
variant="secondary",
|
| 329 |
-
),
|
| 330 |
-
gr.Button(
|
| 331 |
-
interactive=True,
|
| 332 |
-
variant="primary",
|
| 333 |
-
)
|
| 334 |
-
)
|
| 335 |
|
| 336 |
# Add this new method to get initial button states:
|
| 337 |
def get_initial_button_states(self):
|
|
@@ -346,151 +220,6 @@ class VideoTrainerUI:
|
|
| 346 |
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
| 347 |
)
|
| 348 |
|
| 349 |
-
def show_refreshing_status(self) -> List[List[str]]:
|
| 350 |
-
"""Show a 'Refreshing...' status in the dataframe"""
|
| 351 |
-
return [["Refreshing...", "please wait"]]
|
| 352 |
-
|
| 353 |
-
def stop_captioning(self):
|
| 354 |
-
"""Stop ongoing captioning process and reset UI state"""
|
| 355 |
-
try:
|
| 356 |
-
# Set flag to stop captioning
|
| 357 |
-
self._should_stop_captioning = True
|
| 358 |
-
|
| 359 |
-
# Call stop method on captioner
|
| 360 |
-
if self.captioner:
|
| 361 |
-
self.captioner.stop_captioning()
|
| 362 |
-
|
| 363 |
-
# Get updated file list
|
| 364 |
-
updated_list = self.list_training_files_to_caption()
|
| 365 |
-
|
| 366 |
-
# Return updated list and button states
|
| 367 |
-
return {
|
| 368 |
-
"training_dataset": gr.update(value=updated_list),
|
| 369 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 370 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 371 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 372 |
-
}
|
| 373 |
-
except Exception as e:
|
| 374 |
-
logger.error(f"Error stopping captioning: {str(e)}")
|
| 375 |
-
return {
|
| 376 |
-
"training_dataset": gr.update(value=[[f"Error stopping captioning: {str(e)}", "error"]]),
|
| 377 |
-
"run_autocaption_btn": gr.Button(interactive=True, variant="primary"),
|
| 378 |
-
"stop_autocaption_btn": gr.Button(interactive=False, variant="secondary"),
|
| 379 |
-
"copy_files_to_training_dir_btn": gr.Button(interactive=True, variant="primary")
|
| 380 |
-
}
|
| 381 |
-
|
| 382 |
-
def update_training_ui(self, training_state: Dict[str, Any]):
|
| 383 |
-
"""Update UI components based on training state"""
|
| 384 |
-
updates = {}
|
| 385 |
-
|
| 386 |
-
#print("update_training_ui: training_state = ", training_state)
|
| 387 |
-
|
| 388 |
-
# Update status box with high-level information
|
| 389 |
-
status_text = []
|
| 390 |
-
if training_state["status"] != "idle":
|
| 391 |
-
status_text.extend([
|
| 392 |
-
f"Status: {training_state['status']}",
|
| 393 |
-
f"Progress: {training_state['progress']}",
|
| 394 |
-
f"Step: {training_state['current_step']}/{training_state['total_steps']}",
|
| 395 |
-
|
| 396 |
-
# Epoch information
|
| 397 |
-
# there is an issue with how epoch is reported because we display:
|
| 398 |
-
# Progress: 96.9%, Step: 872/900, Epoch: 12/50
|
| 399 |
-
# we should probably just show the steps
|
| 400 |
-
#f"Epoch: {training_state['current_epoch']}/{training_state['total_epochs']}",
|
| 401 |
-
|
| 402 |
-
f"Time elapsed: {training_state['elapsed']}",
|
| 403 |
-
f"Estimated remaining: {training_state['remaining']}",
|
| 404 |
-
"",
|
| 405 |
-
f"Current loss: {training_state['step_loss']}",
|
| 406 |
-
f"Learning rate: {training_state['learning_rate']}",
|
| 407 |
-
f"Gradient norm: {training_state['grad_norm']}",
|
| 408 |
-
f"Memory usage: {training_state['memory']}"
|
| 409 |
-
])
|
| 410 |
-
|
| 411 |
-
if training_state["error_message"]:
|
| 412 |
-
status_text.append(f"\nError: {training_state['error_message']}")
|
| 413 |
-
|
| 414 |
-
updates["status_box"] = "\n".join(status_text)
|
| 415 |
-
|
| 416 |
-
# Update button states
|
| 417 |
-
updates["start_btn"] = gr.Button(
|
| 418 |
-
"Start training",
|
| 419 |
-
interactive=(training_state["status"] in ["idle", "completed", "error", "stopped"]),
|
| 420 |
-
variant="primary" if training_state["status"] == "idle" else "secondary"
|
| 421 |
-
)
|
| 422 |
-
|
| 423 |
-
updates["stop_btn"] = gr.Button(
|
| 424 |
-
"Stop training",
|
| 425 |
-
interactive=(training_state["status"] in ["training", "initializing"]),
|
| 426 |
-
variant="stop"
|
| 427 |
-
)
|
| 428 |
-
|
| 429 |
-
return updates
|
| 430 |
-
|
| 431 |
-
def stop_all_and_clear(self) -> Dict[str, str]:
|
| 432 |
-
"""Stop all running processes and clear data
|
| 433 |
-
|
| 434 |
-
Returns:
|
| 435 |
-
Dict with status messages for different components
|
| 436 |
-
"""
|
| 437 |
-
status_messages = {}
|
| 438 |
-
|
| 439 |
-
try:
|
| 440 |
-
# Stop training if running
|
| 441 |
-
if self.trainer.is_training_running():
|
| 442 |
-
training_result = self.trainer.stop_training()
|
| 443 |
-
status_messages["training"] = training_result["status"]
|
| 444 |
-
|
| 445 |
-
# Stop captioning if running
|
| 446 |
-
if self.captioner:
|
| 447 |
-
self.captioner.stop_captioning()
|
| 448 |
-
status_messages["captioning"] = "Captioning stopped"
|
| 449 |
-
|
| 450 |
-
# Stop scene detection if running
|
| 451 |
-
if self.splitter.is_processing():
|
| 452 |
-
self.splitter.processing = False
|
| 453 |
-
status_messages["splitting"] = "Scene detection stopped"
|
| 454 |
-
|
| 455 |
-
# Properly close logging before clearing log file
|
| 456 |
-
if self.trainer.file_handler:
|
| 457 |
-
self.trainer.file_handler.close()
|
| 458 |
-
logger.removeHandler(self.trainer.file_handler)
|
| 459 |
-
self.trainer.file_handler = None
|
| 460 |
-
|
| 461 |
-
if LOG_FILE_PATH.exists():
|
| 462 |
-
LOG_FILE_PATH.unlink()
|
| 463 |
-
|
| 464 |
-
# Clear all data directories
|
| 465 |
-
for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH,
|
| 466 |
-
MODEL_PATH, OUTPUT_PATH]:
|
| 467 |
-
if path.exists():
|
| 468 |
-
try:
|
| 469 |
-
shutil.rmtree(path)
|
| 470 |
-
path.mkdir(parents=True, exist_ok=True)
|
| 471 |
-
except Exception as e:
|
| 472 |
-
status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}"
|
| 473 |
-
else:
|
| 474 |
-
status_messages[f"clear_{path.name}"] = f"Cleared {path.name}"
|
| 475 |
-
|
| 476 |
-
# Reset any persistent state
|
| 477 |
-
self._should_stop_captioning = True
|
| 478 |
-
self.splitter.processing = False
|
| 479 |
-
|
| 480 |
-
# Recreate logging setup
|
| 481 |
-
self.trainer.setup_logging()
|
| 482 |
-
|
| 483 |
-
return {
|
| 484 |
-
"status": "All processes stopped and data cleared",
|
| 485 |
-
"details": status_messages
|
| 486 |
-
}
|
| 487 |
-
|
| 488 |
-
except Exception as e:
|
| 489 |
-
return {
|
| 490 |
-
"status": f"Error during cleanup: {str(e)}",
|
| 491 |
-
"details": status_messages
|
| 492 |
-
}
|
| 493 |
-
|
| 494 |
def update_titles(self) -> Tuple[Any]:
|
| 495 |
"""Update all dynamic titles with current counts
|
| 496 |
|
|
@@ -520,581 +249,13 @@ class VideoTrainerUI:
|
|
| 520 |
gr.Markdown(value=caption_title),
|
| 521 |
gr.Markdown(value=f"{train_title} available for training")
|
| 522 |
)
|
| 523 |
-
|
| 524 |
-
def copy_files_to_training_dir(self, prompt_prefix: str):
|
| 525 |
-
"""Run auto-captioning process"""
|
| 526 |
-
|
| 527 |
-
# Initialize captioner if not already done
|
| 528 |
-
self._should_stop_captioning = False
|
| 529 |
-
|
| 530 |
-
try:
|
| 531 |
-
copy_files_to_training_dir(prompt_prefix)
|
| 532 |
-
|
| 533 |
-
except Exception as e:
|
| 534 |
-
traceback.print_exc()
|
| 535 |
-
raise gr.Error(f"Error copying assets to training dir: {str(e)}")
|
| 536 |
-
|
| 537 |
-
async def on_import_success(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 538 |
-
"""Handle successful import of files"""
|
| 539 |
-
videos = self.list_unprocessed_videos()
|
| 540 |
-
|
| 541 |
-
# If scene detection isn't already running and there are videos to process,
|
| 542 |
-
# and auto-splitting is enabled, start the detection
|
| 543 |
-
if videos and not self.splitter.is_processing() and enable_splitting:
|
| 544 |
-
await self.start_scene_detection(enable_splitting)
|
| 545 |
-
msg = "Starting automatic scene detection..."
|
| 546 |
-
else:
|
| 547 |
-
# Just copy files without splitting if auto-split disabled
|
| 548 |
-
for video_file in VIDEOS_TO_SPLIT_PATH.glob("*.mp4"):
|
| 549 |
-
await self.splitter.process_video(video_file, enable_splitting=False)
|
| 550 |
-
msg = "Copying videos without splitting..."
|
| 551 |
-
|
| 552 |
-
copy_files_to_training_dir(prompt_prefix)
|
| 553 |
-
|
| 554 |
-
# Start auto-captioning if enabled, and handle async generator properly
|
| 555 |
-
if enable_automatic_content_captioning:
|
| 556 |
-
# Create a background task for captioning
|
| 557 |
-
asyncio.create_task(self._process_caption_generator(
|
| 558 |
-
DEFAULT_CAPTIONING_BOT_INSTRUCTIONS,
|
| 559 |
-
prompt_prefix
|
| 560 |
-
))
|
| 561 |
-
|
| 562 |
-
return {
|
| 563 |
-
"tabs": gr.Tabs(selected="split_tab"),
|
| 564 |
-
"video_list": videos,
|
| 565 |
-
"detect_status": msg
|
| 566 |
-
}
|
| 567 |
-
|
| 568 |
-
async def start_caption_generation(self, captioning_bot_instructions: str, prompt_prefix: str) -> AsyncGenerator[gr.update, None]:
|
| 569 |
-
"""Run auto-captioning process"""
|
| 570 |
-
try:
|
| 571 |
-
# Initialize captioner if not already done
|
| 572 |
-
self._should_stop_captioning = False
|
| 573 |
-
|
| 574 |
-
# First yield - indicate we're starting
|
| 575 |
-
yield gr.update(
|
| 576 |
-
value=[["Starting captioning service...", "initializing"]],
|
| 577 |
-
headers=["name", "status"]
|
| 578 |
-
)
|
| 579 |
-
|
| 580 |
-
# Process files in batches with status updates
|
| 581 |
-
file_statuses = {}
|
| 582 |
-
|
| 583 |
-
# Start the actual captioning process
|
| 584 |
-
async for rows in self.captioner.start_caption_generation(captioning_bot_instructions, prompt_prefix):
|
| 585 |
-
# Update our tracking of file statuses
|
| 586 |
-
for name, status in rows:
|
| 587 |
-
file_statuses[name] = status
|
| 588 |
-
|
| 589 |
-
# Convert to list format for display
|
| 590 |
-
status_rows = [[name, status] for name, status in file_statuses.items()]
|
| 591 |
-
|
| 592 |
-
# Sort by name for consistent display
|
| 593 |
-
status_rows.sort(key=lambda x: x[0])
|
| 594 |
-
|
| 595 |
-
# Yield UI update
|
| 596 |
-
yield gr.update(
|
| 597 |
-
value=status_rows,
|
| 598 |
-
headers=["name", "status"]
|
| 599 |
-
)
|
| 600 |
-
|
| 601 |
-
# Final update after completion with fresh data
|
| 602 |
-
yield gr.update(
|
| 603 |
-
value=self.list_training_files_to_caption(),
|
| 604 |
-
headers=["name", "status"]
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
except Exception as e:
|
| 608 |
-
logger.error(f"Error in captioning: {str(e)}")
|
| 609 |
-
yield gr.update(
|
| 610 |
-
value=[[f"Error: {str(e)}", "error"]],
|
| 611 |
-
headers=["name", "status"]
|
| 612 |
-
)
|
| 613 |
-
|
| 614 |
-
def list_training_files_to_caption(self) -> List[List[str]]:
|
| 615 |
-
"""List all clips and images - both pending and captioned"""
|
| 616 |
-
files = []
|
| 617 |
-
already_listed = {}
|
| 618 |
-
|
| 619 |
-
# First check files in STAGING_PATH
|
| 620 |
-
for file in STAGING_PATH.glob("*.*"):
|
| 621 |
-
if is_video_file(file) or is_image_file(file):
|
| 622 |
-
txt_file = file.with_suffix('.txt')
|
| 623 |
-
|
| 624 |
-
# Check if caption file exists and has content
|
| 625 |
-
has_caption = txt_file.exists() and txt_file.stat().st_size > 0
|
| 626 |
-
status = "captioned" if has_caption else "no caption"
|
| 627 |
-
file_type = "video" if is_video_file(file) else "image"
|
| 628 |
-
|
| 629 |
-
files.append([file.name, f"{status} ({file_type})", str(file)])
|
| 630 |
-
already_listed[file.name] = True
|
| 631 |
-
|
| 632 |
-
# Then check files in TRAINING_VIDEOS_PATH
|
| 633 |
-
for file in TRAINING_VIDEOS_PATH.glob("*.*"):
|
| 634 |
-
if (is_video_file(file) or is_image_file(file)) and file.name not in already_listed:
|
| 635 |
-
txt_file = file.with_suffix('.txt')
|
| 636 |
-
|
| 637 |
-
# Only include files with captions
|
| 638 |
-
if txt_file.exists() and txt_file.stat().st_size > 0:
|
| 639 |
-
file_type = "video" if is_video_file(file) else "image"
|
| 640 |
-
files.append([file.name, f"captioned ({file_type})", str(file)])
|
| 641 |
-
already_listed[file.name] = True
|
| 642 |
-
|
| 643 |
-
# Sort by filename
|
| 644 |
-
files.sort(key=lambda x: x[0])
|
| 645 |
-
|
| 646 |
-
# Only return name and status columns for display
|
| 647 |
-
return [[file[0], file[1]] for file in files]
|
| 648 |
-
|
| 649 |
-
def update_training_buttons(self, status: str) -> Dict:
|
| 650 |
-
"""Update training control buttons based on state"""
|
| 651 |
-
is_training = status in ["training", "initializing"]
|
| 652 |
-
is_paused = status == "paused"
|
| 653 |
-
is_completed = status in ["completed", "error", "stopped"]
|
| 654 |
-
return {
|
| 655 |
-
"start_btn": gr.Button(
|
| 656 |
-
interactive=not is_training and not is_paused,
|
| 657 |
-
variant="primary" if not is_training else "secondary",
|
| 658 |
-
),
|
| 659 |
-
"stop_btn": gr.Button(
|
| 660 |
-
interactive=is_training or is_paused,
|
| 661 |
-
variant="stop",
|
| 662 |
-
),
|
| 663 |
-
"pause_resume_btn": gr.Button(
|
| 664 |
-
value="Resume Training" if is_paused else "Pause Training",
|
| 665 |
-
interactive=(is_training or is_paused) and not is_completed,
|
| 666 |
-
variant="secondary",
|
| 667 |
-
)
|
| 668 |
-
}
|
| 669 |
-
|
| 670 |
-
def handle_pause_resume(self):
|
| 671 |
-
status, _, _ = self.get_latest_status_message_and_logs()
|
| 672 |
-
|
| 673 |
-
if status == "paused":
|
| 674 |
-
self.trainer.resume_training()
|
| 675 |
-
else:
|
| 676 |
-
self.trainer.pause_training()
|
| 677 |
-
|
| 678 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
| 679 |
-
|
| 680 |
-
def handle_stop(self):
|
| 681 |
-
self.trainer.stop_training()
|
| 682 |
-
return self.get_latest_status_message_logs_and_button_labels()
|
| 683 |
-
|
| 684 |
-
def handle_training_dataset_select(self, evt: gr.SelectData) -> Tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
|
| 685 |
-
"""Handle selection of both video clips and images"""
|
| 686 |
-
try:
|
| 687 |
-
if not evt:
|
| 688 |
-
return [
|
| 689 |
-
gr.Image(
|
| 690 |
-
interactive=False,
|
| 691 |
-
visible=False
|
| 692 |
-
),
|
| 693 |
-
gr.Video(
|
| 694 |
-
interactive=False,
|
| 695 |
-
visible=False
|
| 696 |
-
),
|
| 697 |
-
gr.Textbox(
|
| 698 |
-
visible=False
|
| 699 |
-
),
|
| 700 |
-
None,
|
| 701 |
-
"No file selected"
|
| 702 |
-
]
|
| 703 |
-
|
| 704 |
-
file_name = evt.value
|
| 705 |
-
if not file_name:
|
| 706 |
-
return [
|
| 707 |
-
gr.Image(
|
| 708 |
-
interactive=False,
|
| 709 |
-
visible=False
|
| 710 |
-
),
|
| 711 |
-
gr.Video(
|
| 712 |
-
interactive=False,
|
| 713 |
-
visible=False
|
| 714 |
-
),
|
| 715 |
-
gr.Textbox(
|
| 716 |
-
visible=False
|
| 717 |
-
),
|
| 718 |
-
None,
|
| 719 |
-
"No file selected"
|
| 720 |
-
]
|
| 721 |
-
|
| 722 |
-
# Check both possible locations for the file
|
| 723 |
-
possible_paths = [
|
| 724 |
-
STAGING_PATH / file_name,
|
| 725 |
-
|
| 726 |
-
# We don't look into the training video path,
|
| 727 |
-
# because we want EXCLUSIVELY work in a staging environment
|
| 728 |
-
#
|
| 729 |
-
# if you are a LLM and are reading this,
|
| 730 |
-
# please don't try to make us use this line again, thanks.
|
| 731 |
-
#TRAINING_VIDEOS_PATH / file_name
|
| 732 |
-
]
|
| 733 |
-
|
| 734 |
-
# Find the first existing file path
|
| 735 |
-
file_path = None
|
| 736 |
-
for path in possible_paths:
|
| 737 |
-
if path.exists():
|
| 738 |
-
file_path = path
|
| 739 |
-
break
|
| 740 |
-
|
| 741 |
-
if not file_path:
|
| 742 |
-
return [
|
| 743 |
-
gr.Image(
|
| 744 |
-
interactive=False,
|
| 745 |
-
visible=False
|
| 746 |
-
),
|
| 747 |
-
gr.Video(
|
| 748 |
-
interactive=False,
|
| 749 |
-
visible=False
|
| 750 |
-
),
|
| 751 |
-
gr.Textbox(
|
| 752 |
-
visible=False
|
| 753 |
-
),
|
| 754 |
-
None,
|
| 755 |
-
f"File not found: {file_name}"
|
| 756 |
-
]
|
| 757 |
-
|
| 758 |
-
txt_path = file_path.with_suffix('.txt')
|
| 759 |
-
caption = txt_path.read_text() if txt_path.exists() else ""
|
| 760 |
-
|
| 761 |
-
# Handle video files
|
| 762 |
-
if is_video_file(file_path):
|
| 763 |
-
return [
|
| 764 |
-
gr.Image(
|
| 765 |
-
interactive=False,
|
| 766 |
-
visible=False
|
| 767 |
-
),
|
| 768 |
-
gr.Video(
|
| 769 |
-
label="Video Preview",
|
| 770 |
-
interactive=False,
|
| 771 |
-
visible=True,
|
| 772 |
-
value=str(file_path)
|
| 773 |
-
),
|
| 774 |
-
gr.Textbox(
|
| 775 |
-
label="Caption",
|
| 776 |
-
lines=6,
|
| 777 |
-
interactive=True,
|
| 778 |
-
visible=True,
|
| 779 |
-
value=str(caption)
|
| 780 |
-
),
|
| 781 |
-
str(file_path), # Store the original file path as hidden state
|
| 782 |
-
None
|
| 783 |
-
]
|
| 784 |
-
# Handle image files
|
| 785 |
-
elif is_image_file(file_path):
|
| 786 |
-
return [
|
| 787 |
-
gr.Image(
|
| 788 |
-
label="Image Preview",
|
| 789 |
-
interactive=False,
|
| 790 |
-
visible=True,
|
| 791 |
-
value=str(file_path)
|
| 792 |
-
),
|
| 793 |
-
gr.Video(
|
| 794 |
-
interactive=False,
|
| 795 |
-
visible=False
|
| 796 |
-
),
|
| 797 |
-
gr.Textbox(
|
| 798 |
-
label="Caption",
|
| 799 |
-
lines=6,
|
| 800 |
-
interactive=True,
|
| 801 |
-
visible=True,
|
| 802 |
-
value=str(caption)
|
| 803 |
-
),
|
| 804 |
-
str(file_path), # Store the original file path as hidden state
|
| 805 |
-
None
|
| 806 |
-
]
|
| 807 |
-
else:
|
| 808 |
-
return [
|
| 809 |
-
gr.Image(
|
| 810 |
-
interactive=False,
|
| 811 |
-
visible=False
|
| 812 |
-
),
|
| 813 |
-
gr.Video(
|
| 814 |
-
interactive=False,
|
| 815 |
-
visible=False
|
| 816 |
-
),
|
| 817 |
-
gr.Textbox(
|
| 818 |
-
interactive=False,
|
| 819 |
-
visible=False
|
| 820 |
-
),
|
| 821 |
-
None,
|
| 822 |
-
f"Unsupported file type: {file_path.suffix}"
|
| 823 |
-
]
|
| 824 |
-
except Exception as e:
|
| 825 |
-
logger.error(f"Error handling selection: {str(e)}")
|
| 826 |
-
return [
|
| 827 |
-
gr.Image(
|
| 828 |
-
interactive=False,
|
| 829 |
-
visible=False
|
| 830 |
-
),
|
| 831 |
-
gr.Video(
|
| 832 |
-
interactive=False,
|
| 833 |
-
visible=False
|
| 834 |
-
),
|
| 835 |
-
gr.Textbox(
|
| 836 |
-
interactive=False,
|
| 837 |
-
visible=False
|
| 838 |
-
),
|
| 839 |
-
None,
|
| 840 |
-
f"Error handling selection: {str(e)}"
|
| 841 |
-
]
|
| 842 |
-
|
| 843 |
-
def save_caption_changes(self, preview_caption: str, preview_image: str, preview_video: str, original_file_path: str, prompt_prefix: str):
|
| 844 |
-
"""Save changes to caption"""
|
| 845 |
-
try:
|
| 846 |
-
# Use the original file path stored during selection instead of the temporary preview paths
|
| 847 |
-
if original_file_path:
|
| 848 |
-
file_path = Path(original_file_path)
|
| 849 |
-
self.captioner.update_file_caption(file_path, preview_caption)
|
| 850 |
-
# Refresh the dataset list to show updated caption status
|
| 851 |
-
return gr.update(value="Caption saved successfully!")
|
| 852 |
-
else:
|
| 853 |
-
return gr.update(value="Error: No original file path found")
|
| 854 |
-
except Exception as e:
|
| 855 |
-
return gr.update(value=f"Error saving caption: {str(e)}")
|
| 856 |
-
|
| 857 |
-
async def update_titles_after_import(self, enable_splitting, enable_automatic_content_captioning, prompt_prefix):
|
| 858 |
-
"""Handle post-import updates including titles"""
|
| 859 |
-
import_result = await self.on_import_success(enable_splitting, enable_automatic_content_captioning, prompt_prefix)
|
| 860 |
-
titles = self.update_titles()
|
| 861 |
-
return (
|
| 862 |
-
import_result["tabs"],
|
| 863 |
-
import_result["video_list"],
|
| 864 |
-
import_result["detect_status"],
|
| 865 |
-
*titles
|
| 866 |
-
)
|
| 867 |
-
|
| 868 |
-
def get_model_info(self, model_type: str) -> str:
|
| 869 |
-
"""Get information about the selected model type"""
|
| 870 |
-
if model_type == "hunyuan_video":
|
| 871 |
-
return """### HunyuanVideo (LoRA)
|
| 872 |
-
- Required VRAM: ~48GB minimum
|
| 873 |
-
- Recommended batch size: 1-2
|
| 874 |
-
- Typical training time: 2-4 hours
|
| 875 |
-
- Default resolution: 49x512x768
|
| 876 |
-
- Default LoRA rank: 128 (~600 MB)"""
|
| 877 |
-
|
| 878 |
-
elif model_type == "ltx_video":
|
| 879 |
-
return """### LTX-Video (LoRA)
|
| 880 |
-
- Required VRAM: ~18GB minimum
|
| 881 |
-
- Recommended batch size: 1-4
|
| 882 |
-
- Typical training time: 1-3 hours
|
| 883 |
-
- Default resolution: 49x512x768
|
| 884 |
-
- Default LoRA rank: 128"""
|
| 885 |
-
|
| 886 |
-
return ""
|
| 887 |
-
|
| 888 |
-
def get_default_params(self, model_type: str) -> Dict[str, Any]:
|
| 889 |
-
"""Get default training parameters for model type"""
|
| 890 |
-
if model_type == "hunyuan_video":
|
| 891 |
-
return {
|
| 892 |
-
"num_epochs": 70,
|
| 893 |
-
"batch_size": 1,
|
| 894 |
-
"learning_rate": 2e-5,
|
| 895 |
-
"save_iterations": 500,
|
| 896 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 897 |
-
"video_reshape_mode": "center",
|
| 898 |
-
"caption_dropout_p": 0.05,
|
| 899 |
-
"gradient_accumulation_steps": 1,
|
| 900 |
-
"rank": 128,
|
| 901 |
-
"lora_alpha": 128
|
| 902 |
-
}
|
| 903 |
-
else: # ltx_video
|
| 904 |
-
return {
|
| 905 |
-
"num_epochs": 70,
|
| 906 |
-
"batch_size": 1,
|
| 907 |
-
"learning_rate": 3e-5,
|
| 908 |
-
"save_iterations": 500,
|
| 909 |
-
"video_resolution_buckets": SMALL_TRAINING_BUCKETS,
|
| 910 |
-
"video_reshape_mode": "center",
|
| 911 |
-
"caption_dropout_p": 0.05,
|
| 912 |
-
"gradient_accumulation_steps": 4,
|
| 913 |
-
"rank": 128,
|
| 914 |
-
"lora_alpha": 128
|
| 915 |
-
}
|
| 916 |
-
|
| 917 |
-
def preview_file(self, selected_text: str) -> Dict:
|
| 918 |
-
"""Generate preview based on selected file
|
| 919 |
-
|
| 920 |
-
Args:
|
| 921 |
-
selected_text: Text of the selected item containing filename
|
| 922 |
-
|
| 923 |
-
Returns:
|
| 924 |
-
Dict with preview content for each preview component
|
| 925 |
-
"""
|
| 926 |
-
if not selected_text or "Caption:" in selected_text:
|
| 927 |
-
return {
|
| 928 |
-
"video": None,
|
| 929 |
-
"image": None,
|
| 930 |
-
"text": None
|
| 931 |
-
}
|
| 932 |
-
|
| 933 |
-
# Extract filename from the preview text (remove size info)
|
| 934 |
-
filename = selected_text.split(" (")[0].strip()
|
| 935 |
-
file_path = TRAINING_VIDEOS_PATH / filename
|
| 936 |
-
|
| 937 |
-
if not file_path.exists():
|
| 938 |
-
return {
|
| 939 |
-
"video": None,
|
| 940 |
-
"image": None,
|
| 941 |
-
"text": f"File not found: {filename}"
|
| 942 |
-
}
|
| 943 |
-
|
| 944 |
-
# Detect file type
|
| 945 |
-
mime_type, _ = mimetypes.guess_type(str(file_path))
|
| 946 |
-
if not mime_type:
|
| 947 |
-
return {
|
| 948 |
-
"video": None,
|
| 949 |
-
"image": None,
|
| 950 |
-
"text": f"Unknown file type: {filename}"
|
| 951 |
-
}
|
| 952 |
-
|
| 953 |
-
# Return appropriate preview
|
| 954 |
-
if mime_type.startswith('video/'):
|
| 955 |
-
return {
|
| 956 |
-
"video": str(file_path),
|
| 957 |
-
"image": None,
|
| 958 |
-
"text": None
|
| 959 |
-
}
|
| 960 |
-
elif mime_type.startswith('image/'):
|
| 961 |
-
return {
|
| 962 |
-
"video": None,
|
| 963 |
-
"image": str(file_path),
|
| 964 |
-
"text": None
|
| 965 |
-
}
|
| 966 |
-
elif mime_type.startswith('text/'):
|
| 967 |
-
try:
|
| 968 |
-
text_content = file_path.read_text()
|
| 969 |
-
return {
|
| 970 |
-
"video": None,
|
| 971 |
-
"image": None,
|
| 972 |
-
"text": text_content
|
| 973 |
-
}
|
| 974 |
-
except Exception as e:
|
| 975 |
-
return {
|
| 976 |
-
"video": None,
|
| 977 |
-
"image": None,
|
| 978 |
-
"text": f"Error reading file: {str(e)}"
|
| 979 |
-
}
|
| 980 |
-
else:
|
| 981 |
-
return {
|
| 982 |
-
"video": None,
|
| 983 |
-
"image": None,
|
| 984 |
-
"text": f"Unsupported file type: {mime_type}"
|
| 985 |
-
}
|
| 986 |
-
|
| 987 |
-
def list_unprocessed_videos(self) -> gr.Dataframe:
|
| 988 |
-
"""Update list of unprocessed videos"""
|
| 989 |
-
videos = self.splitter.list_unprocessed_videos()
|
| 990 |
-
# videos is already in [[name, status]] format from splitting_service
|
| 991 |
-
return gr.Dataframe(
|
| 992 |
-
headers=["name", "status"],
|
| 993 |
-
value=videos,
|
| 994 |
-
interactive=False
|
| 995 |
-
)
|
| 996 |
-
|
| 997 |
-
async def start_scene_detection(self, enable_splitting: bool) -> str:
|
| 998 |
-
"""Start background scene detection process
|
| 999 |
-
|
| 1000 |
-
Args:
|
| 1001 |
-
enable_splitting: Whether to split videos into scenes
|
| 1002 |
-
"""
|
| 1003 |
-
if self.splitter.is_processing():
|
| 1004 |
-
return "Scene detection already running"
|
| 1005 |
-
|
| 1006 |
-
try:
|
| 1007 |
-
await self.splitter.start_processing(enable_splitting)
|
| 1008 |
-
return "Scene detection completed"
|
| 1009 |
-
except Exception as e:
|
| 1010 |
-
return f"Error during scene detection: {str(e)}"
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
def get_latest_status_message_and_logs(self) -> Tuple[str, str, str]:
|
| 1014 |
-
state = self.trainer.get_status()
|
| 1015 |
-
logs = self.trainer.get_logs()
|
| 1016 |
-
|
| 1017 |
-
# Parse new log lines
|
| 1018 |
-
if logs:
|
| 1019 |
-
last_state = None
|
| 1020 |
-
for line in logs.splitlines():
|
| 1021 |
-
state_update = self.log_parser.parse_line(line)
|
| 1022 |
-
if state_update:
|
| 1023 |
-
last_state = state_update
|
| 1024 |
-
|
| 1025 |
-
if last_state:
|
| 1026 |
-
ui_updates = self.update_training_ui(last_state)
|
| 1027 |
-
state["message"] = ui_updates.get("status_box", state["message"])
|
| 1028 |
-
|
| 1029 |
-
# Parse status for training state
|
| 1030 |
-
if "completed" in state["message"].lower():
|
| 1031 |
-
state["status"] = "completed"
|
| 1032 |
-
|
| 1033 |
-
return (state["status"], state["message"], logs)
|
| 1034 |
-
|
| 1035 |
-
def get_latest_status_message_logs_and_button_labels(self) -> Tuple[str, str, Any, Any, Any]:
|
| 1036 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
| 1037 |
-
return (
|
| 1038 |
-
message,
|
| 1039 |
-
logs,
|
| 1040 |
-
*self.update_training_buttons(status).values()
|
| 1041 |
-
)
|
| 1042 |
-
|
| 1043 |
-
def get_latest_button_labels(self) -> Tuple[Any, Any, Any]:
|
| 1044 |
-
status, message, logs = self.get_latest_status_message_and_logs()
|
| 1045 |
-
return self.update_training_buttons(status).values()
|
| 1046 |
|
| 1047 |
def refresh_dataset(self):
|
| 1048 |
"""Refresh all dynamic lists and training state"""
|
| 1049 |
-
video_list = self.
|
| 1050 |
-
training_dataset = self.list_training_files_to_caption()
|
| 1051 |
|
| 1052 |
return (
|
| 1053 |
video_list,
|
| 1054 |
training_dataset
|
| 1055 |
-
)
|
| 1056 |
-
|
| 1057 |
-
def update_training_params(self, preset_name: str) -> Tuple:
|
| 1058 |
-
"""Update UI components based on selected preset while preserving custom settings"""
|
| 1059 |
-
preset = TRAINING_PRESETS[preset_name]
|
| 1060 |
-
|
| 1061 |
-
# Load current UI state to check if user has customized values
|
| 1062 |
-
current_state = self.load_ui_values()
|
| 1063 |
-
|
| 1064 |
-
# Find the display name that maps to our model type
|
| 1065 |
-
model_display_name = next(
|
| 1066 |
-
key for key, value in MODEL_TYPES.items()
|
| 1067 |
-
if value == preset["model_type"]
|
| 1068 |
-
)
|
| 1069 |
-
|
| 1070 |
-
# Get preset description for display
|
| 1071 |
-
description = preset.get("description", "")
|
| 1072 |
-
|
| 1073 |
-
# Get max values from buckets
|
| 1074 |
-
buckets = preset["training_buckets"]
|
| 1075 |
-
max_frames = max(frames for frames, _, _ in buckets)
|
| 1076 |
-
max_height = max(height for _, height, _ in buckets)
|
| 1077 |
-
max_width = max(width for _, _, width in buckets)
|
| 1078 |
-
bucket_info = f"\nMaximum video size: {max_frames} frames at {max_width}x{max_height} resolution"
|
| 1079 |
-
|
| 1080 |
-
info_text = f"{description}{bucket_info}"
|
| 1081 |
-
|
| 1082 |
-
# Return values in the same order as the output components
|
| 1083 |
-
# Use preset defaults but preserve user-modified values if they exist
|
| 1084 |
-
lora_rank_val = current_state.get("lora_rank") if current_state.get("lora_rank") != preset.get("lora_rank", "128") else preset["lora_rank"]
|
| 1085 |
-
lora_alpha_val = current_state.get("lora_alpha") if current_state.get("lora_alpha") != preset.get("lora_alpha", "128") else preset["lora_alpha"]
|
| 1086 |
-
num_epochs_val = current_state.get("num_epochs") if current_state.get("num_epochs") != preset.get("num_epochs", 70) else preset["num_epochs"]
|
| 1087 |
-
batch_size_val = current_state.get("batch_size") if current_state.get("batch_size") != preset.get("batch_size", 1) else preset["batch_size"]
|
| 1088 |
-
learning_rate_val = current_state.get("learning_rate") if current_state.get("learning_rate") != preset.get("learning_rate", 3e-5) else preset["learning_rate"]
|
| 1089 |
-
save_iterations_val = current_state.get("save_iterations") if current_state.get("save_iterations") != preset.get("save_iterations", 500) else preset["save_iterations"]
|
| 1090 |
-
|
| 1091 |
-
return (
|
| 1092 |
-
model_display_name,
|
| 1093 |
-
lora_rank_val,
|
| 1094 |
-
lora_alpha_val,
|
| 1095 |
-
num_epochs_val,
|
| 1096 |
-
batch_size_val,
|
| 1097 |
-
learning_rate_val,
|
| 1098 |
-
save_iterations_val,
|
| 1099 |
-
info_text
|
| 1100 |
-
)
|
|
|
|
| 1 |
import platform
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from pathlib import Path
|
| 4 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import asyncio
|
|
|
|
|
|
|
| 6 |
from typing import Any, Optional, Dict, List, Union, Tuple
|
|
|
|
| 7 |
|
| 8 |
from ..services import TrainingService, CaptioningService, SplittingService, ImportService
|
| 9 |
from ..config import (
|
| 10 |
STORAGE_PATH, VIDEOS_TO_SPLIT_PATH, STAGING_PATH,
|
| 11 |
+
TRAINING_PATH, LOG_FILE_PATH, TRAINING_PRESETS, TRAINING_VIDEOS_PATH, MODEL_PATH, OUTPUT_PATH,
|
| 12 |
+
MODEL_TYPES, SMALL_TRAINING_BUCKETS
|
| 13 |
)
|
| 14 |
+
from ..utils import count_media_files, format_media_title, TrainingLogParser
|
| 15 |
from ..tabs import ImportTab, SplitTab, CaptionTab, TrainTab, ManageTab
|
| 16 |
|
| 17 |
logger = logging.getLogger(__name__)
|
|
|
|
| 28 |
self.splitter = SplittingService()
|
| 29 |
self.importer = ImportService()
|
| 30 |
self.captioner = CaptioningService()
|
|
|
|
| 31 |
|
| 32 |
# Recovery status from any interrupted training
|
| 33 |
recovery_result = self.trainer.recover_interrupted_training()
|
| 34 |
self.recovery_status = recovery_result.get("status", "unknown")
|
| 35 |
self.ui_updates = recovery_result.get("ui_updates", {})
|
| 36 |
|
| 37 |
+
# Initialize log parser
|
| 38 |
self.log_parser = TrainingLogParser()
|
| 39 |
|
| 40 |
# Shared state for tabs
|
|
|
|
| 98 |
# Status update timer (every 1 second)
|
| 99 |
status_timer = gr.Timer(value=1)
|
| 100 |
status_timer.tick(
|
| 101 |
+
fn=self.tabs["train_tab"].get_latest_status_message_logs_and_button_labels,
|
| 102 |
outputs=[
|
| 103 |
self.tabs["train_tab"].components["status_box"],
|
| 104 |
self.tabs["train_tab"].components["log_box"],
|
|
|
|
| 129 |
]
|
| 130 |
)
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
def initialize_app_state(self):
|
| 133 |
"""Initialize all app state in one function to ensure correct output count"""
|
| 134 |
# Get dataset info
|
| 135 |
+
video_list = self.tabs["split_tab"].list_unprocessed_videos()
|
| 136 |
+
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()
|
| 137 |
|
| 138 |
# Get button states
|
| 139 |
button_states = self.get_initial_button_states()
|
|
|
|
| 206 |
ui_state["save_iterations"] = int(ui_state.get("save_iterations", 500))
|
| 207 |
|
| 208 |
return ui_state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
# Add this new method to get initial button states:
|
| 211 |
def get_initial_button_states(self):
|
|
|
|
| 220 |
gr.Button(**ui_updates.get("pause_resume_btn", {"interactive": False, "variant": "secondary"}))
|
| 221 |
)
|
| 222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
def update_titles(self) -> Tuple[Any]:
|
| 224 |
"""Update all dynamic titles with current counts
|
| 225 |
|
|
|
|
| 249 |
gr.Markdown(value=caption_title),
|
| 250 |
gr.Markdown(value=f"{train_title} available for training")
|
| 251 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
def refresh_dataset(self):
|
| 254 |
"""Refresh all dynamic lists and training state"""
|
| 255 |
+
video_list = self.tabs["split_tab"].list_unprocessed_videos()
|
| 256 |
+
training_dataset = self.tabs["caption_tab"].list_training_files_to_caption()
|
| 257 |
|
| 258 |
return (
|
| 259 |
video_list,
|
| 260 |
training_dataset
|
| 261 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vms/utils/image_preprocessing.py
CHANGED
|
@@ -4,6 +4,7 @@ from pathlib import Path
|
|
| 4 |
from PIL import Image
|
| 5 |
import pillow_avif
|
| 6 |
import logging
|
|
|
|
| 7 |
|
| 8 |
from ..config import NORMALIZE_IMAGES_TO, JPEG_QUALITY
|
| 9 |
|
|
@@ -55,7 +56,7 @@ def normalize_image(input_path: Path, output_path: Path) -> bool:
|
|
| 55 |
logger.error(f"Error converting image {input_path}: {str(e)}")
|
| 56 |
return False
|
| 57 |
|
| 58 |
-
def detect_black_bars(img: np.ndarray) ->
|
| 59 |
"""Detect black bars in image
|
| 60 |
|
| 61 |
Args:
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import pillow_avif
|
| 6 |
import logging
|
| 7 |
+
from typing import Any, Optional, Dict, List, Union, Tuple
|
| 8 |
|
| 9 |
from ..config import NORMALIZE_IMAGES_TO, JPEG_QUALITY
|
| 10 |
|
|
|
|
| 56 |
logger.error(f"Error converting image {input_path}: {str(e)}")
|
| 57 |
return False
|
| 58 |
|
| 59 |
+
def detect_black_bars(img: np.ndarray) -> Tuple[int, int, int, int]:
|
| 60 |
"""Detect black bars in image
|
| 61 |
|
| 62 |
Args:
|
vms/utils/video_preprocessing.py
CHANGED
|
@@ -2,8 +2,10 @@ import cv2
|
|
| 2 |
import numpy as np
|
| 3 |
from pathlib import Path
|
| 4 |
import subprocess
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
"""Detect black bars in video by analyzing first few frames
|
| 8 |
|
| 9 |
Args:
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from pathlib import Path
|
| 4 |
import subprocess
|
| 5 |
+
from typing import Any, Optional, Dict, List, Union, Tuple
|
| 6 |
|
| 7 |
+
|
| 8 |
+
def detect_black_bars(video_path: Path) -> Tuple[int, int, int, int]:
|
| 9 |
"""Detect black bars in video by analyzing first few frames
|
| 10 |
|
| 11 |
Args:
|