Julian Bilcke
commited on
Commit
·
c90af3c
1
Parent(s):
a529bb7
working on UI improvements
Browse files- app.py +43 -2
- config.py +98 -24
- training_service.py +11 -4
app.py
CHANGED
|
@@ -661,6 +661,26 @@ class VideoTrainerUI:
|
|
| 661 |
training_dataset
|
| 662 |
)
|
| 663 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 664 |
def create_ui(self):
|
| 665 |
"""Create Gradio interface"""
|
| 666 |
|
|
@@ -820,6 +840,15 @@ class VideoTrainerUI:
|
|
| 820 |
with gr.Row():
|
| 821 |
train_title = gr.Markdown("## 0 files available for training (0 bytes)")
|
| 822 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 823 |
with gr.Row():
|
| 824 |
with gr.Column():
|
| 825 |
model_type = gr.Dropdown(
|
|
@@ -1096,16 +1125,28 @@ class VideoTrainerUI:
|
|
| 1096 |
outputs=[training_dataset]
|
| 1097 |
)
|
| 1098 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1099 |
# Training control events
|
| 1100 |
start_btn.click(
|
| 1101 |
-
fn=lambda model_type, *args: (
|
| 1102 |
self.log_parser.reset(),
|
| 1103 |
self.trainer.start_training(
|
| 1104 |
MODEL_TYPES[model_type],
|
| 1105 |
-
*args
|
|
|
|
| 1106 |
)
|
| 1107 |
),
|
| 1108 |
inputs=[
|
|
|
|
| 1109 |
model_type,
|
| 1110 |
lora_rank,
|
| 1111 |
lora_alpha,
|
|
|
|
| 661 |
training_dataset
|
| 662 |
)
|
| 663 |
|
| 664 |
+
def update_training_params(self, preset_name: str) -> Dict:
|
| 665 |
+
"""Update UI components based on selected preset"""
|
| 666 |
+
preset = TRAINING_PRESETS[preset_name]
|
| 667 |
+
|
| 668 |
+
# Get preset description for display
|
| 669 |
+
description = preset.get("description", "")
|
| 670 |
+
bucket_info = f"\nBucket configuration: {len(preset['training_buckets'])} buckets"
|
| 671 |
+
info_text = f"{description}{bucket_info}"
|
| 672 |
+
|
| 673 |
+
return {
|
| 674 |
+
"model_type": gr.Dropdown(value=MODEL_TYPES[preset["model_type"]]),
|
| 675 |
+
"lora_rank": gr.Dropdown(value=preset["lora_rank"]),
|
| 676 |
+
"lora_alpha": gr.Dropdown(value=preset["lora_alpha"]),
|
| 677 |
+
"num_epochs": gr.Number(value=preset["num_epochs"]),
|
| 678 |
+
"batch_size": gr.Number(value=preset["batch_size"]),
|
| 679 |
+
"learning_rate": gr.Number(value=preset["learning_rate"]),
|
| 680 |
+
"save_iterations": gr.Number(value=preset["save_iterations"]),
|
| 681 |
+
"preset_info": gr.Markdown(value=info_text)
|
| 682 |
+
}
|
| 683 |
+
|
| 684 |
def create_ui(self):
|
| 685 |
"""Create Gradio interface"""
|
| 686 |
|
|
|
|
| 840 |
with gr.Row():
|
| 841 |
train_title = gr.Markdown("## 0 files available for training (0 bytes)")
|
| 842 |
|
| 843 |
+
with gr.Row():
|
| 844 |
+
with gr.Column():
|
| 845 |
+
training_preset = gr.Dropdown(
|
| 846 |
+
choices=list(TRAINING_PRESETS.keys()),
|
| 847 |
+
label="Training Preset",
|
| 848 |
+
value=list(TRAINING_PRESETS.keys())[0]
|
| 849 |
+
)
|
| 850 |
+
preset_info = gr.Markdown()
|
| 851 |
+
|
| 852 |
with gr.Row():
|
| 853 |
with gr.Column():
|
| 854 |
model_type = gr.Dropdown(
|
|
|
|
| 1125 |
outputs=[training_dataset]
|
| 1126 |
)
|
| 1127 |
|
| 1128 |
+
training_preset.change(
|
| 1129 |
+
fn=self.update_training_params,
|
| 1130 |
+
inputs=[training_preset],
|
| 1131 |
+
outputs=[
|
| 1132 |
+
model_type, lora_rank, lora_alpha,
|
| 1133 |
+
num_epochs, batch_size, learning_rate,
|
| 1134 |
+
save_iterations, preset_info
|
| 1135 |
+
]
|
| 1136 |
+
)
|
| 1137 |
+
|
| 1138 |
# Training control events
|
| 1139 |
start_btn.click(
|
| 1140 |
+
fn=lambda preset, model_type, *args: (
|
| 1141 |
self.log_parser.reset(),
|
| 1142 |
self.trainer.start_training(
|
| 1143 |
MODEL_TYPES[model_type],
|
| 1144 |
+
*args,
|
| 1145 |
+
preset_name=preset
|
| 1146 |
)
|
| 1147 |
),
|
| 1148 |
inputs=[
|
| 1149 |
+
training_preset,
|
| 1150 |
model_type,
|
| 1151 |
lora_rank,
|
| 1152 |
lora_alpha,
|
config.py
CHANGED
|
@@ -55,8 +55,8 @@ MODEL_TYPES = {
|
|
| 55 |
# it is best to use resolutions that are powers of 8
|
| 56 |
# The resolution should be divisible by 32
|
| 57 |
# so we cannot use 1080, 540 etc as they are not divisible by 32
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
|
| 62 |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
|
|
@@ -65,26 +65,100 @@ TRAINING_HEIGHT = 512 # 32 * 16
|
|
| 65 |
# it is important that the resolution buckets properly cover the training dataset,
|
| 66 |
# or else that we exclude from the dataset videos that are out of this range
|
| 67 |
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
]
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
@dataclass
|
| 89 |
class TrainingConfig:
|
| 90 |
"""Configuration class for finetrainers training"""
|
|
@@ -159,7 +233,7 @@ class TrainingConfig:
|
|
| 159 |
nccl_timeout: int = 1800
|
| 160 |
|
| 161 |
@classmethod
|
| 162 |
-
def hunyuan_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig':
|
| 163 |
"""Configuration for Hunyuan video-to-video LoRA training"""
|
| 164 |
return cls(
|
| 165 |
model_name="hunyuan_video",
|
|
@@ -174,13 +248,13 @@ class TrainingConfig:
|
|
| 174 |
gradient_accumulation_steps=1,
|
| 175 |
lora_rank=128,
|
| 176 |
lora_alpha=128,
|
| 177 |
-
video_resolution_buckets=
|
| 178 |
caption_dropout_p=0.05,
|
| 179 |
flow_weighting_scheme="none" # Hunyuan specific
|
| 180 |
)
|
| 181 |
|
| 182 |
@classmethod
|
| 183 |
-
def ltx_video_lora(cls, data_path: str, output_path: str) -> 'TrainingConfig':
|
| 184 |
"""Configuration for LTX-Video LoRA training"""
|
| 185 |
return cls(
|
| 186 |
model_name="ltx_video",
|
|
@@ -195,7 +269,7 @@ class TrainingConfig:
|
|
| 195 |
gradient_accumulation_steps=4,
|
| 196 |
lora_rank=128,
|
| 197 |
lora_alpha=128,
|
| 198 |
-
video_resolution_buckets=
|
| 199 |
caption_dropout_p=0.05,
|
| 200 |
flow_weighting_scheme="logit_normal" # LTX specific
|
| 201 |
)
|
|
|
|
| 55 |
# it is best to use resolutions that are powers of 8
|
| 56 |
# The resolution should be divisible by 32
|
| 57 |
# so we cannot use 1080, 540 etc as they are not divisible by 32
|
| 58 |
+
MEDIUM_19_9_RATIO_WIDTH = 768 # 32 * 24
|
| 59 |
+
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16
|
| 60 |
|
| 61 |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
|
| 62 |
# 1920 = 32 * 60 (divided by 2: 960 = 32 * 30)
|
|
|
|
| 65 |
# it is important that the resolution buckets properly cover the training dataset,
|
| 66 |
# or else that we exclude from the dataset videos that are out of this range
|
| 67 |
# right now, finetrainers will crash if that happens, so the workaround is to have more buckets in here
|
| 68 |
+
|
| 69 |
+
NB_FRAMES_1 = 1 # 1
|
| 70 |
+
NB_FRAMES_9 = 8 + 1 # 8 + 1
|
| 71 |
+
NB_FRAMES_17 = 8 * 2 + 1 # 16 + 1
|
| 72 |
+
NB_FRAMES_32 = 8 * 4 + 1 # 32 + 1
|
| 73 |
+
NB_FRAMES_48 = 8 * 6 + 1 # 48 + 1
|
| 74 |
+
NB_FRAMES_64 = 8 * 8 + 1 # 64 + 1
|
| 75 |
+
NB_FRAMES_80 = 8 * 10 + 1 # 80 + 1
|
| 76 |
+
NB_FRAMES_96 = 8 * 12 + 1 # 96 + 1
|
| 77 |
+
NB_FRAMES_112 = 8 * 14 + 1 # 112 + 1
|
| 78 |
+
NB_FRAMES_128 = 8 * 16 + 1 # 128 + 1
|
| 79 |
+
NB_FRAMES_144 = 8 * 18 + 1 # 144 + 1
|
| 80 |
+
NB_FRAMES_160 = 8 * 20 + 1 # 160 + 1
|
| 81 |
+
NB_FRAMES_176 = 8 * 22 + 1 # 176 + 1
|
| 82 |
+
NB_FRAMES_192 = 8 * 24 + 1 # 192 + 1
|
| 83 |
+
NB_FRAMES_224 = 8 * 28 + 1 # 224 + 1
|
| 84 |
+
NB_FRAMES_256 = 8 * 32 + 1 # 256 + 1
|
| 85 |
+
# 256 isn't a lot by the way, especially with 60 FPS videos..
|
| 86 |
+
# can we crank it and put more frames in here?
|
| 87 |
+
|
| 88 |
+
SMALL_TRAINING_BUCKETS = [
|
| 89 |
+
(NB_FRAMES_1, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 1
|
| 90 |
+
(NB_FRAMES_9, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1
|
| 91 |
+
(NB_FRAMES_17, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1
|
| 92 |
+
(NB_FRAMES_32, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1
|
| 93 |
+
(NB_FRAMES_48, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1
|
| 94 |
+
(NB_FRAMES_64, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1
|
| 95 |
+
(NB_FRAMES_80, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1
|
| 96 |
+
(NB_FRAMES_96, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1
|
| 97 |
+
(NB_FRAMES_112, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1
|
| 98 |
+
(NB_FRAMES_128, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1
|
| 99 |
+
(NB_FRAMES_144, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1
|
| 100 |
+
(NB_FRAMES_160, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1
|
| 101 |
+
(NB_FRAMES_176, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1
|
| 102 |
+
(NB_FRAMES_192, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1
|
| 103 |
+
(NB_FRAMES_224, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1
|
| 104 |
+
(NB_FRAMES_256, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
MEDIUM_19_9_RATIO_WIDTH = 928 # 32 * 29
|
| 108 |
+
MEDIUM_19_9_RATIO_HEIGHT = 512 # 32 * 16
|
| 109 |
+
|
| 110 |
+
MEDIUM_19_9_RATIO_BUCKETS = [
|
| 111 |
+
(NB_FRAMES_1, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 1
|
| 112 |
+
(NB_FRAMES_9, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 8 + 1
|
| 113 |
+
(NB_FRAMES_17, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 16 + 1
|
| 114 |
+
(NB_FRAMES_32, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 32 + 1
|
| 115 |
+
(NB_FRAMES_48, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 48 + 1
|
| 116 |
+
(NB_FRAMES_64, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 64 + 1
|
| 117 |
+
(NB_FRAMES_80, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 80 + 1
|
| 118 |
+
(NB_FRAMES_96, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 96 + 1
|
| 119 |
+
(NB_FRAMES_112, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 112 + 1
|
| 120 |
+
(NB_FRAMES_128, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 128 + 1
|
| 121 |
+
(NB_FRAMES_144, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 144 + 1
|
| 122 |
+
(NB_FRAMES_160, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 160 + 1
|
| 123 |
+
(NB_FRAMES_176, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 176 + 1
|
| 124 |
+
(NB_FRAMES_192, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 192 + 1
|
| 125 |
+
(NB_FRAMES_224, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 224 + 1
|
| 126 |
+
(NB_FRAMES_256, MEDIUM_19_9_RATIO_HEIGHT, MEDIUM_19_9_RATIO_WIDTH), # 256 + 1
|
| 127 |
]
|
| 128 |
|
| 129 |
+
TRAINING_PRESETS = {
|
| 130 |
+
"HunyuanVideo (normal)": {
|
| 131 |
+
"model_type": "hunyuan_video",
|
| 132 |
+
"lora_rank": "128",
|
| 133 |
+
"lora_alpha": "128",
|
| 134 |
+
"num_epochs": 70,
|
| 135 |
+
"batch_size": 1,
|
| 136 |
+
"learning_rate": 2e-5,
|
| 137 |
+
"save_iterations": 500,
|
| 138 |
+
"training_buckets": SMALL_TRAINING_BUCKETS,
|
| 139 |
+
},
|
| 140 |
+
"LTX-Video (normal)": {
|
| 141 |
+
"model_type": "ltx_video",
|
| 142 |
+
"lora_rank": "128",
|
| 143 |
+
"lora_alpha": "128",
|
| 144 |
+
"num_epochs": 70,
|
| 145 |
+
"batch_size": 1,
|
| 146 |
+
"learning_rate": 3e-5,
|
| 147 |
+
"save_iterations": 500,
|
| 148 |
+
"training_buckets": SMALL_TRAINING_BUCKETS,
|
| 149 |
+
},
|
| 150 |
+
"LTX-Video (16:9, HQ)": {
|
| 151 |
+
"model_type": "ltx_video",
|
| 152 |
+
"lora_rank": "256",
|
| 153 |
+
"lora_alpha": "128",
|
| 154 |
+
"num_epochs": 50,
|
| 155 |
+
"batch_size": 1,
|
| 156 |
+
"learning_rate": 3e-5,
|
| 157 |
+
"save_iterations": 200,
|
| 158 |
+
"training_buckets": MEDIUM_19_9_RATIO_BUCKETS,
|
| 159 |
+
}
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
@dataclass
|
| 163 |
class TrainingConfig:
|
| 164 |
"""Configuration class for finetrainers training"""
|
|
|
|
| 233 |
nccl_timeout: int = 1800
|
| 234 |
|
| 235 |
@classmethod
|
| 236 |
+
def hunyuan_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
|
| 237 |
"""Configuration for Hunyuan video-to-video LoRA training"""
|
| 238 |
return cls(
|
| 239 |
model_name="hunyuan_video",
|
|
|
|
| 248 |
gradient_accumulation_steps=1,
|
| 249 |
lora_rank=128,
|
| 250 |
lora_alpha=128,
|
| 251 |
+
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
|
| 252 |
caption_dropout_p=0.05,
|
| 253 |
flow_weighting_scheme="none" # Hunyuan specific
|
| 254 |
)
|
| 255 |
|
| 256 |
@classmethod
|
| 257 |
+
def ltx_video_lora(cls, data_path: str, output_path: str, buckets=None) -> 'TrainingConfig':
|
| 258 |
"""Configuration for LTX-Video LoRA training"""
|
| 259 |
return cls(
|
| 260 |
model_name="ltx_video",
|
|
|
|
| 269 |
gradient_accumulation_steps=4,
|
| 270 |
lora_rank=128,
|
| 271 |
lora_alpha=128,
|
| 272 |
+
video_resolution_buckets=buckets or SMALL_TRAINING_BUCKETS,
|
| 273 |
caption_dropout_p=0.05,
|
| 274 |
flow_weighting_scheme="logit_normal" # LTX specific
|
| 275 |
)
|
training_service.py
CHANGED
|
@@ -257,18 +257,25 @@ class TrainingService:
|
|
| 257 |
logger.error(error_msg)
|
| 258 |
return error_msg, "No training data available"
|
| 259 |
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
if model_type == "hunyuan_video":
|
| 262 |
config = TrainingConfig.hunyuan_video_lora(
|
| 263 |
data_path=str(TRAINING_PATH),
|
| 264 |
-
output_path=str(OUTPUT_PATH)
|
|
|
|
| 265 |
)
|
| 266 |
else: # ltx_video
|
| 267 |
config = TrainingConfig.ltx_video_lora(
|
| 268 |
data_path=str(TRAINING_PATH),
|
| 269 |
-
output_path=str(OUTPUT_PATH)
|
|
|
|
| 270 |
)
|
| 271 |
-
|
| 272 |
# Update with UI parameters
|
| 273 |
config.train_epochs = int(num_epochs)
|
| 274 |
config.lora_rank = int(lora_rank)
|
|
|
|
| 257 |
logger.error(error_msg)
|
| 258 |
return error_msg, "No training data available"
|
| 259 |
|
| 260 |
+
|
| 261 |
+
# Get preset configuration
|
| 262 |
+
preset = TRAINING_PRESETS[preset_name]
|
| 263 |
+
training_buckets = preset["training_buckets"]
|
| 264 |
+
|
| 265 |
+
# Get config for selected model type with preset buckets
|
| 266 |
if model_type == "hunyuan_video":
|
| 267 |
config = TrainingConfig.hunyuan_video_lora(
|
| 268 |
data_path=str(TRAINING_PATH),
|
| 269 |
+
output_path=str(OUTPUT_PATH),
|
| 270 |
+
buckets=training_buckets
|
| 271 |
)
|
| 272 |
else: # ltx_video
|
| 273 |
config = TrainingConfig.ltx_video_lora(
|
| 274 |
data_path=str(TRAINING_PATH),
|
| 275 |
+
output_path=str(OUTPUT_PATH),
|
| 276 |
+
buckets=training_buckets
|
| 277 |
)
|
| 278 |
+
|
| 279 |
# Update with UI parameters
|
| 280 |
config.train_epochs = int(num_epochs)
|
| 281 |
config.lora_rank = int(lora_rank)
|