Julian Bilcke
commited on
Commit
·
f577b1e
1
Parent(s):
df0584b
investigating captionning issues
Browse files- app.py +3 -3
- captioning_service.py +67 -52
app.py
CHANGED
|
@@ -263,15 +263,15 @@ class VideoTrainerUI:
|
|
| 263 |
is_completed = training_state["status"] in ["completed", "error", "stopped"]
|
| 264 |
|
| 265 |
return {
|
| 266 |
-
start_btn: gr.Button(
|
| 267 |
interactive=not is_training and not is_paused,
|
| 268 |
variant="primary" if not is_training else "secondary",
|
| 269 |
),
|
| 270 |
-
stop_btn: gr.Button(
|
| 271 |
interactive=is_training or is_paused,
|
| 272 |
variant="stop",
|
| 273 |
),
|
| 274 |
-
pause_resume_btn: gr.Button(
|
| 275 |
value="Resume Training" if is_paused else "Pause Training",
|
| 276 |
interactive=(is_training or is_paused) and not is_completed,
|
| 277 |
variant="secondary",
|
|
|
|
| 263 |
is_completed = training_state["status"] in ["completed", "error", "stopped"]
|
| 264 |
|
| 265 |
return {
|
| 266 |
+
"start_btn": gr.Button(
|
| 267 |
interactive=not is_training and not is_paused,
|
| 268 |
variant="primary" if not is_training else "secondary",
|
| 269 |
),
|
| 270 |
+
"stop_btn": gr.Button(
|
| 271 |
interactive=is_training or is_paused,
|
| 272 |
variant="stop",
|
| 273 |
),
|
| 274 |
+
"pause_resume_btn": gr.Button(
|
| 275 |
value="Resume Training" if is_paused else "Pause Training",
|
| 276 |
interactive=(is_training or is_paused) and not is_completed,
|
| 277 |
variant="secondary",
|
captioning_service.py
CHANGED
|
@@ -2,8 +2,6 @@ import logging
|
|
| 2 |
import torch
|
| 3 |
import shutil
|
| 4 |
import gradio as gr
|
| 5 |
-
from llava.model.builder import load_pretrained_model
|
| 6 |
-
from llava.mm_utils import tokenizer_image_token
|
| 7 |
import numpy as np
|
| 8 |
from decord import VideoReader, cpu
|
| 9 |
from pathlib import Path
|
|
@@ -12,6 +10,10 @@ import asyncio
|
|
| 12 |
from dataclasses import dataclass
|
| 13 |
from datetime import datetime
|
| 14 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
|
| 16 |
from utils import extract_scene_info, is_image_file, is_video_file
|
| 17 |
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
|
@@ -142,12 +144,21 @@ class CaptioningService:
|
|
| 142 |
self.model.eval()
|
| 143 |
|
| 144 |
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> tuple[np.ndarray, str, float]:
|
| 145 |
-
"""Load and preprocess video frames
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
logger.debug(f"Loading video: {video_path_str}")
|
| 150 |
|
|
|
|
| 151 |
if max_frames_num == 0:
|
| 152 |
return np.zeros((1, 336, 336, 3)), "", 0
|
| 153 |
|
|
@@ -155,17 +166,18 @@ class CaptioningService:
|
|
| 155 |
total_frame_num = len(vr)
|
| 156 |
video_time = total_frame_num / vr.get_avg_fps()
|
| 157 |
|
| 158 |
-
# Calculate frame indices
|
| 159 |
fps = round(vr.get_avg_fps()/fps)
|
| 160 |
frame_idx = [i for i in range(0, len(vr), fps)]
|
| 161 |
frame_time = [i/fps for i in frame_idx]
|
| 162 |
|
|
|
|
| 163 |
if len(frame_idx) > max_frames_num or force_sample:
|
| 164 |
sample_fps = max_frames_num
|
| 165 |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
| 166 |
frame_idx = uniform_sampled_frames.tolist()
|
| 167 |
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
| 168 |
-
|
| 169 |
frame_time_str = ",".join([f"{i:.2f}s" for i in frame_time])
|
| 170 |
|
| 171 |
try:
|
|
@@ -181,7 +193,7 @@ class CaptioningService:
|
|
| 181 |
video_name = video_path.name
|
| 182 |
logger.info(f"Starting processing of video: {video_name}")
|
| 183 |
|
| 184 |
-
# Load video metadata
|
| 185 |
logger.debug(f"Loading video metadata for {video_name}")
|
| 186 |
loop = asyncio.get_event_loop()
|
| 187 |
vr = await loop.run_in_executor(None, lambda: VideoReader(str(video_path), ctx=cpu(0)))
|
|
@@ -201,28 +213,21 @@ class CaptioningService:
|
|
| 201 |
parent_caption = ""
|
| 202 |
if "___" in video_path.stem:
|
| 203 |
parent_name, _ = extract_scene_info(video_path.stem)
|
| 204 |
-
#print(f"parent_name is {parent_name}")
|
| 205 |
parent_txt_path = VIDEOS_TO_SPLIT_PATH / f"{parent_name}.txt"
|
| 206 |
if parent_txt_path.exists():
|
| 207 |
-
logger.debug(f"Found parent caption file: {parent_txt_path}")
|
| 208 |
parent_caption = parent_txt_path.read_text().strip()
|
| 209 |
|
| 210 |
# Ensure model is loaded before processing
|
| 211 |
await self.ensure_model_loaded()
|
| 212 |
|
| 213 |
if USE_MOCK_CAPTIONING_MODEL:
|
| 214 |
-
|
| 215 |
# Even in mock mode, we'll generate a caption that shows we processed parent info
|
| 216 |
clip_caption = f"This is a test caption for {video_name}"
|
| 217 |
|
| 218 |
# Combine clip caption with parent caption
|
| 219 |
-
if parent_caption
|
| 220 |
-
#print(f"we have parent_caption, so we define the full_caption as {clip_caption}\n{parent_caption}")
|
| 221 |
-
|
| 222 |
full_caption = f"{clip_caption}\n{parent_caption}"
|
| 223 |
else:
|
| 224 |
-
#print(f"we don't have a parent_caption, so we define the full_caption as {clip_caption}")
|
| 225 |
-
|
| 226 |
full_caption = clip_caption
|
| 227 |
|
| 228 |
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
|
@@ -238,13 +243,12 @@ class CaptioningService:
|
|
| 238 |
progress.processed_frames = total_frames
|
| 239 |
progress.completed_at = datetime.now()
|
| 240 |
yield progress, full_caption
|
| 241 |
-
|
| 242 |
else:
|
| 243 |
-
# Process frames
|
| 244 |
-
max_frames_num = 64
|
| 245 |
frames, frame_times_str, video_time = await loop.run_in_executor(
|
| 246 |
None,
|
| 247 |
-
lambda: self._load_video(video_path, max_frames_num)
|
| 248 |
)
|
| 249 |
|
| 250 |
# Process all frames at once using the image processor
|
|
@@ -264,16 +268,27 @@ class CaptioningService:
|
|
| 264 |
# Move processed frames to GPU
|
| 265 |
video_tensor = processed_frames.to('cuda').bfloat16()
|
| 266 |
|
|
|
|
|
|
|
| 267 |
time_instruction = (f"The video lasts for {video_time:.2f} seconds, and {len(frames)} "
|
| 268 |
f"frames are uniformly sampled from it. These frames are located at {frame_times_str}.")
|
| 269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
|
| 271 |
input_ids = await loop.run_in_executor(
|
| 272 |
None,
|
| 273 |
-
lambda: tokenizer_image_token(
|
| 274 |
)
|
| 275 |
|
| 276 |
-
# Generate caption
|
| 277 |
with torch.no_grad():
|
| 278 |
output = await loop.run_in_executor(
|
| 279 |
None,
|
|
@@ -283,45 +298,45 @@ class CaptioningService:
|
|
| 283 |
modalities=["video"],
|
| 284 |
do_sample=False,
|
| 285 |
temperature=0,
|
| 286 |
-
max_new_tokens=
|
| 287 |
)
|
| 288 |
)
|
| 289 |
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# Combine clip caption with parent caption
|
| 296 |
-
if parent_caption:
|
| 297 |
-
print(f"we have parent_caption, so we define the full_caption as {clip_caption}\n{parent_caption}")
|
| 298 |
-
|
| 299 |
-
full_caption = f"{clip_caption}\n{parent_caption}"
|
| 300 |
-
else:
|
| 301 |
-
print(f"we don't have a parent_caption, so we define the full_caption as {clip_caption}")
|
| 302 |
-
|
| 303 |
-
full_caption = clip_caption
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
| 318 |
except Exception as e:
|
| 319 |
progress.status = "error"
|
| 320 |
progress.error = str(e)
|
| 321 |
progress.completed_at = datetime.now()
|
| 322 |
yield progress, None
|
| 323 |
-
raise
|
| 324 |
-
|
| 325 |
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
|
| 326 |
"""Process a single image for captioning"""
|
| 327 |
try:
|
|
|
|
| 2 |
import torch
|
| 3 |
import shutil
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
from decord import VideoReader, cpu
|
| 7 |
from pathlib import Path
|
|
|
|
| 10 |
from dataclasses import dataclass
|
| 11 |
from datetime import datetime
|
| 12 |
import cv2
|
| 13 |
+
import copy
|
| 14 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
| 15 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
| 16 |
+
|
| 17 |
from config import TRAINING_VIDEOS_PATH, STAGING_PATH, PRELOAD_CAPTIONING_MODEL, CAPTIONING_MODEL, USE_MOCK_CAPTIONING_MODEL, DEFAULT_CAPTIONING_BOT_INSTRUCTIONS, VIDEOS_TO_SPLIT_PATH, DEFAULT_PROMPT_PREFIX
|
| 18 |
from utils import extract_scene_info, is_image_file, is_video_file
|
| 19 |
from finetrainers_utils import copy_files_to_training_dir, prepare_finetrainers_dataset
|
|
|
|
| 144 |
self.model.eval()
|
| 145 |
|
| 146 |
def _load_video(self, video_path: Path, max_frames_num: int = 64, fps: int = 1, force_sample: bool = True) -> tuple[np.ndarray, str, float]:
|
| 147 |
+
"""Load and preprocess video frames with strict limits
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
video_path: Path to video file
|
| 151 |
+
max_frames_num: Maximum number of frames to extract (default: 64)
|
| 152 |
+
fps: Frames per second to sample (default: 1)
|
| 153 |
+
force_sample: Whether to force uniform sampling (default: True)
|
| 154 |
+
|
| 155 |
+
Returns:
|
| 156 |
+
Tuple of (frames, frame_times_str, video_time)
|
| 157 |
+
"""
|
| 158 |
+
video_path_str = str(video_path)
|
| 159 |
logger.debug(f"Loading video: {video_path_str}")
|
| 160 |
|
| 161 |
+
# Handle empty video case
|
| 162 |
if max_frames_num == 0:
|
| 163 |
return np.zeros((1, 336, 336, 3)), "", 0
|
| 164 |
|
|
|
|
| 166 |
total_frame_num = len(vr)
|
| 167 |
video_time = total_frame_num / vr.get_avg_fps()
|
| 168 |
|
| 169 |
+
# Calculate frame indices with uniform sampling
|
| 170 |
fps = round(vr.get_avg_fps()/fps)
|
| 171 |
frame_idx = [i for i in range(0, len(vr), fps)]
|
| 172 |
frame_time = [i/fps for i in frame_idx]
|
| 173 |
|
| 174 |
+
# Force uniform sampling if too many frames
|
| 175 |
if len(frame_idx) > max_frames_num or force_sample:
|
| 176 |
sample_fps = max_frames_num
|
| 177 |
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
| 178 |
frame_idx = uniform_sampled_frames.tolist()
|
| 179 |
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
| 180 |
+
|
| 181 |
frame_time_str = ",".join([f"{i:.2f}s" for i in frame_time])
|
| 182 |
|
| 183 |
try:
|
|
|
|
| 193 |
video_name = video_path.name
|
| 194 |
logger.info(f"Starting processing of video: {video_name}")
|
| 195 |
|
| 196 |
+
# Load video metadata with strict frame limits
|
| 197 |
logger.debug(f"Loading video metadata for {video_name}")
|
| 198 |
loop = asyncio.get_event_loop()
|
| 199 |
vr = await loop.run_in_executor(None, lambda: VideoReader(str(video_path), ctx=cpu(0)))
|
|
|
|
| 213 |
parent_caption = ""
|
| 214 |
if "___" in video_path.stem:
|
| 215 |
parent_name, _ = extract_scene_info(video_path.stem)
|
|
|
|
| 216 |
parent_txt_path = VIDEOS_TO_SPLIT_PATH / f"{parent_name}.txt"
|
| 217 |
if parent_txt_path.exists():
|
|
|
|
| 218 |
parent_caption = parent_txt_path.read_text().strip()
|
| 219 |
|
| 220 |
# Ensure model is loaded before processing
|
| 221 |
await self.ensure_model_loaded()
|
| 222 |
|
| 223 |
if USE_MOCK_CAPTIONING_MODEL:
|
|
|
|
| 224 |
# Even in mock mode, we'll generate a caption that shows we processed parent info
|
| 225 |
clip_caption = f"This is a test caption for {video_name}"
|
| 226 |
|
| 227 |
# Combine clip caption with parent caption
|
| 228 |
+
if parent_caption:
|
|
|
|
|
|
|
| 229 |
full_caption = f"{clip_caption}\n{parent_caption}"
|
| 230 |
else:
|
|
|
|
|
|
|
| 231 |
full_caption = clip_caption
|
| 232 |
|
| 233 |
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
|
|
|
| 243 |
progress.processed_frames = total_frames
|
| 244 |
progress.completed_at = datetime.now()
|
| 245 |
yield progress, full_caption
|
|
|
|
| 246 |
else:
|
| 247 |
+
# Process frames with strict limits
|
| 248 |
+
max_frames_num = 64 # Maximum frames supported by the model
|
| 249 |
frames, frame_times_str, video_time = await loop.run_in_executor(
|
| 250 |
None,
|
| 251 |
+
lambda: self._load_video(video_path, max_frames_num, fps=1, force_sample=True)
|
| 252 |
)
|
| 253 |
|
| 254 |
# Process all frames at once using the image processor
|
|
|
|
| 268 |
# Move processed frames to GPU
|
| 269 |
video_tensor = processed_frames.to('cuda').bfloat16()
|
| 270 |
|
| 271 |
+
# Use proper conversation template and tokens
|
| 272 |
+
conv_template = "qwen_1_5"
|
| 273 |
time_instruction = (f"The video lasts for {video_time:.2f} seconds, and {len(frames)} "
|
| 274 |
f"frames are uniformly sampled from it. These frames are located at {frame_times_str}.")
|
| 275 |
+
|
| 276 |
+
full_question = DEFAULT_IMAGE_TOKEN + f"{time_instruction}\n{prompt}"
|
| 277 |
+
|
| 278 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
| 279 |
+
conv.append_message(conv.roles[0], full_question)
|
| 280 |
+
conv.append_message(conv.roles[1], None)
|
| 281 |
+
prompt_question = conv.get_prompt()
|
| 282 |
+
|
| 283 |
+
# Cap the output length to prevent hallucination
|
| 284 |
+
max_new_tokens = 512 # Reasonable limit for caption length
|
| 285 |
|
| 286 |
input_ids = await loop.run_in_executor(
|
| 287 |
None,
|
| 288 |
+
lambda: tokenizer_image_token(prompt_question, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
|
| 289 |
)
|
| 290 |
|
| 291 |
+
# Generate caption with controlled parameters
|
| 292 |
with torch.no_grad():
|
| 293 |
output = await loop.run_in_executor(
|
| 294 |
None,
|
|
|
|
| 298 |
modalities=["video"],
|
| 299 |
do_sample=False,
|
| 300 |
temperature=0,
|
| 301 |
+
max_new_tokens=max_new_tokens,
|
| 302 |
)
|
| 303 |
)
|
| 304 |
|
| 305 |
+
clip_caption = await loop.run_in_executor(
|
| 306 |
+
None,
|
| 307 |
+
lambda: self.tokenizer.batch_decode(output, skip_special_tokens=True)[0].strip()
|
| 308 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
|
| 310 |
+
# Remove the instruction/question part from the response
|
| 311 |
+
if time_instruction in clip_caption:
|
| 312 |
+
clip_caption = clip_caption.split(time_instruction)[1].strip()
|
| 313 |
+
if prompt in clip_caption:
|
| 314 |
+
clip_caption = clip_caption.split(prompt)[1].strip()
|
| 315 |
|
| 316 |
+
# Combine captions with proper formatting
|
| 317 |
+
if parent_caption:
|
| 318 |
+
full_caption = f"{clip_caption}\n{parent_caption}"
|
| 319 |
+
else:
|
| 320 |
+
full_caption = clip_caption
|
| 321 |
+
|
| 322 |
+
if prompt_prefix and not full_caption.startswith(prompt_prefix):
|
| 323 |
+
full_caption = f"{prompt_prefix}{full_caption}"
|
| 324 |
+
|
| 325 |
+
# Write caption
|
| 326 |
+
txt_path = video_path.with_suffix('.txt')
|
| 327 |
+
txt_path.write_text(full_caption)
|
| 328 |
+
|
| 329 |
+
progress.status = "completed"
|
| 330 |
+
progress.completed_at = datetime.now()
|
| 331 |
+
yield progress, full_caption
|
| 332 |
|
| 333 |
except Exception as e:
|
| 334 |
progress.status = "error"
|
| 335 |
progress.error = str(e)
|
| 336 |
progress.completed_at = datetime.now()
|
| 337 |
yield progress, None
|
| 338 |
+
raise
|
| 339 |
+
|
| 340 |
async def process_image(self, image_path: Path, prompt: str, prompt_prefix: str = "") -> AsyncGenerator[tuple[CaptioningProgress, Optional[str]], None]:
|
| 341 |
"""Process a single image for captioning"""
|
| 342 |
try:
|