File size: 11,969 Bytes
9ebdc51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenTrack Quickstart\n",
"\n",
"This simplified notebook lets you jump straight into training humanoid motion tracking policies with OpenTrack!\n",
"\n",
"**Everything is already set up:**\n",
"- β
OpenTrack repository cloned\n",
"- β
PyTorch and dependencies installed\n",
"- β
Motion capture datasets downloaded\n",
"- β
Workspace directories created\n",
"\n",
"Just run the cells and enjoy! π"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"First, let's set up our workspace paths and helper functions:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import subprocess\n",
"import time\n",
"from pathlib import Path\n",
"from IPython.display import Video, display, HTML\n",
"\n",
"# Workspace paths (already set up by container initialization)\n",
"WORKSPACE = Path(\"/data/workspaces/opentrack\")\n",
"DATASETS_DIR = WORKSPACE / \"datasets\"\n",
"MODELS_DIR = WORKSPACE / \"models\"\n",
"VIDEOS_DIR = WORKSPACE / \"videos\"\n",
"OPENTRACK_REPO = Path.home() / \"OpenTrack\"\n",
"\n",
"# Change to OpenTrack directory\n",
"os.chdir(OPENTRACK_REPO)\n",
"\n",
"print(\"π Workspace directories:\")\n",
"print(f\" Datasets: {DATASETS_DIR}\")\n",
"print(f\" Models: {MODELS_DIR}\")\n",
"print(f\" Videos: {VIDEOS_DIR}\")\n",
"print(f\"\\nβ Working directory: {os.getcwd()}\")\n",
"\n",
"# Check if datasets exist\n",
"mocap_files = list((DATASETS_DIR / \"lafan1\" / \"UnitreeG1\").glob(\"*.npz\"))\n",
"print(f\"\\nβ Found {len(mocap_files)} motion capture files\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Helper function to run OpenTrack commands\n",
"def run_opentrack_command(cmd_args, description=\"Running command\"):\n",
" \"\"\"Run an OpenTrack command and display output\"\"\"\n",
" print(f\"\\n{'='*60}\")\n",
" print(f\"π {description}\")\n",
" print(f\" Command: python {' '.join(cmd_args)}\")\n",
" print(f\"{'='*60}\\n\")\n",
" \n",
" result = subprocess.run(\n",
" ['python'] + cmd_args,\n",
" capture_output=False,\n",
" text=True\n",
" )\n",
" \n",
" if result.returncode == 0:\n",
" print(f\"\\nβ
{description} completed successfully!\")\n",
" else:\n",
" print(f\"\\nβ οΈ {description} exited with code {result.returncode}\")\n",
" \n",
" return result.returncode\n",
"\n",
"# Helper to find latest experiment\n",
"def find_latest_experiment(pattern=''):\n",
" \"\"\"Find the most recent experiment folder\"\"\"\n",
" experiments = [d for d in MODELS_DIR.iterdir() if d.is_dir() and pattern in d.name]\n",
" if not experiments:\n",
" return None\n",
" return sorted(experiments, key=lambda x: x.stat().st_mtime, reverse=True)[0].name\n",
"\n",
"print(\"β Helper functions loaded\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Quick Training (Debug Mode)\n",
"\n",
"Let's train a quick policy in debug mode to verify everything works. This takes just a few minutes:\n",
"\n",
"**Parameters:**\n",
"- `--exp_name debug` - Name for this experiment\n",
"- `--terrain_type flat_terrain` - Train on flat ground"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"\n",
"run_opentrack_command(\n",
" ['train_policy.py', '--exp_name', 'quickstart_debug', '--terrain_type', 'flat_terrain'],\n",
" description=\"Training OpenTrack policy (debug mode)\"\n",
")\n",
"\n",
"# Find the experiment\n",
"exp_folder = find_latest_experiment('quickstart_debug')\n",
"if exp_folder:\n",
" print(f\"\\nπ¦ Experiment saved: {exp_folder}\")\n",
" print(f\" Location: {MODELS_DIR / exp_folder}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convert Checkpoint (Brax β PyTorch)\n",
"\n",
"OpenTrack trains using Brax (JAX-based), but we need to convert the checkpoint to PyTorch for deployment:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp_folder = find_latest_experiment('quickstart_debug')\n",
"\n",
"if exp_folder:\n",
" run_opentrack_command(\n",
" ['brax2torch.py', '--exp_name', exp_folder],\n",
" description=\"Converting Brax checkpoint to PyTorch\"\n",
" )\n",
"else:\n",
" print(\"β οΈ No experiment found. Please run training first.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Generate Videos\n",
"\n",
"Now let's visualize the policy by generating videos using MuJoCo's headless renderer:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp_folder = find_latest_experiment('quickstart_debug')\n",
"\n",
"if exp_folder:\n",
" print(f\"π¬ Generating videos for experiment: {exp_folder}\")\n",
" print(f\" Videos will be saved to: {VIDEOS_DIR}\\n\")\n",
" \n",
" run_opentrack_command(\n",
" ['play_policy.py', '--exp_name', exp_folder, '--use_renderer'],\n",
" description=\"Generating videos with MuJoCo renderer\"\n",
" )\n",
" \n",
" # Give it a moment to finish writing files\n",
" time.sleep(2)\n",
" \n",
" # Find generated videos\n",
" videos = list(VIDEOS_DIR.glob(\"*.mp4\")) + list(VIDEOS_DIR.glob(\"*.gif\"))\n",
" \n",
" if videos:\n",
" print(f\"\\nβ
Generated {len(videos)} video(s):\")\n",
" for v in sorted(videos, key=lambda x: x.stat().st_mtime, reverse=True):\n",
" print(f\" - {v.name}\")\n",
" else:\n",
" print(\"\\nβ οΈ No videos found. They might be in the experiment folder.\")\n",
"else:\n",
" print(\"β οΈ No experiment found. Please run training first.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Display Videos\n",
"\n",
"Let's watch the trained policy in action:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Find all videos\n",
"videos = list(VIDEOS_DIR.glob(\"*.mp4\")) + list(VIDEOS_DIR.glob(\"*.gif\"))\n",
"videos = sorted(videos, key=lambda x: x.stat().st_mtime, reverse=True)\n",
"\n",
"if not videos:\n",
" # Search in experiment folders too\n",
" videos = list(MODELS_DIR.glob(\"**/*.mp4\")) + list(MODELS_DIR.glob(\"**/*.gif\"))\n",
" videos = sorted(videos, key=lambda x: x.stat().st_mtime, reverse=True)\n",
"\n",
"if videos:\n",
" print(f\"π₯ Found {len(videos)} video(s). Displaying...\\n\")\n",
" \n",
" for i, video_path in enumerate(videos[:3]): # Show up to 3 most recent\n",
" print(f\"\\n{'='*60}\")\n",
" print(f\"Video {i+1}: {video_path.name}\")\n",
" print(f\"{'='*60}\")\n",
" \n",
" try:\n",
" if video_path.suffix == '.mp4':\n",
" display(Video(str(video_path), width=800, embed=True))\n",
" elif video_path.suffix == '.gif':\n",
" display(HTML(f'<img src=\"{video_path}\" width=\"800\">'))\n",
" except Exception as e:\n",
" print(f\"β οΈ Error displaying video: {e}\")\n",
" print(f\" You can access it at: {video_path}\")\n",
"else:\n",
" print(\"β οΈ No videos found.\")\n",
" print(\"\\nMake sure you:\")\n",
" print(\" 1. Trained a policy\")\n",
" print(\" 2. Converted the checkpoint\")\n",
" print(\" 3. Generated videos\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Next Steps\n",
"\n",
"### Train on Rough Terrain\n",
"\n",
"Generate terrain and train a more robust policy:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Generate rough terrain\n",
"run_opentrack_command(\n",
" ['generate_terrain.py'],\n",
" description=\"Generating rough terrain\"\n",
")\n",
"\n",
"print(\"\\nβ Terrain generated!\")\n",
"print(\" You can now train with: --terrain_type rough_terrain\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Train on rough terrain\n",
"run_opentrack_command(\n",
" ['train_policy.py', '--exp_name', 'rough_terrain', '--terrain_type', 'rough_terrain'],\n",
" description=\"Training on rough terrain\"\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Full Training (Longer, Better Results)\n",
"\n",
"For production-quality results, remove the debug flag and train for longer:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This will take significantly longer but produce better results\n",
"# run_opentrack_command(\n",
"# ['train_policy.py', '--exp_name', 'full_training', '--terrain_type', 'flat_terrain'],\n",
"# description=\"Full training (this takes a while!)\"\n",
"# )\n",
"\n",
"print(\"Uncomment the code above to run full training (takes 20-60 minutes on GPU)\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Play Reference Motion\n",
"\n",
"Visualize the original mocap data alongside the policy:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"exp_folder = find_latest_experiment()\n",
"\n",
"if exp_folder:\n",
" run_opentrack_command(\n",
" ['play_policy.py', '--exp_name', exp_folder, '--use_renderer', '--play_ref_motion'],\n",
" description=\"Generating videos with reference motion comparison\"\n",
" )\n",
"else:\n",
" print(\"β οΈ No experiment found.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Summary\n",
"\n",
"**What we did:**\n",
"1. β
Trained a humanoid motion tracking policy using OpenTrack\n",
"2. β
Converted the checkpoint from Brax to PyTorch\n",
"3. β
Generated videos of the policy in action\n",
"4. β
Visualized the results\n",
"\n",
"**Project Structure:**\n",
"```\n",
"/data/workspaces/opentrack/\n",
"βββ datasets/ # Motion capture data\n",
"β βββ lafan1/UnitreeG1/*.npz\n",
"βββ models/ # Trained checkpoints\n",
"β βββ <timestamp>_<exp_name>/\n",
"βββ videos/ # Generated videos\n",
" βββ *.mp4, *.gif\n",
"```\n",
"\n",
"**All data persists** across container restarts, so you can continue training or generate new videos anytime!\n",
"\n",
"For more advanced usage, check out the full `opentrack.ipynb` notebook."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.13.0"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|