Upload opentrack.ipynb
Browse files- samples/opentrack.ipynb +493 -0
samples/opentrack.ipynb
ADDED
|
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# OpenTrack - Humanoid Motion Tracking Demo\n",
|
| 8 |
+
"\n",
|
| 9 |
+
"This notebook demonstrates OpenTrack, an open-source humanoid motion tracking system using MuJoCo.\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"**Note**: Training can be resource-intensive. We'll use debug mode for quick testing."
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {},
|
| 17 |
+
"source": [
|
| 18 |
+
"## 1. Setup Environment"
|
| 19 |
+
]
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"cell_type": "code",
|
| 23 |
+
"execution_count": null,
|
| 24 |
+
"metadata": {},
|
| 25 |
+
"outputs": [],
|
| 26 |
+
"source": [
|
| 27 |
+
"import os\n",
|
| 28 |
+
"import subprocess\n",
|
| 29 |
+
"import time\n",
|
| 30 |
+
"import glob\n",
|
| 31 |
+
"from pathlib import Path\n",
|
| 32 |
+
"from IPython.display import Video, display, HTML\n",
|
| 33 |
+
"import threading\n",
|
| 34 |
+
"import queue\n",
|
| 35 |
+
"\n",
|
| 36 |
+
"print(\"Environment setup complete!\")"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "markdown",
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"source": [
|
| 43 |
+
"## 2. Clone OpenTrack Repository"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": null,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"# Clone the repository if not already cloned\n",
|
| 53 |
+
"if not os.path.exists('OpenTrack'):\n",
|
| 54 |
+
" !git clone https://github.com/GalaxyGeneralRobotics/OpenTrack.git\n",
|
| 55 |
+
" print(\"✓ Repository cloned successfully\")\n",
|
| 56 |
+
"else:\n",
|
| 57 |
+
" print(\"✓ Repository already exists\")\n",
|
| 58 |
+
"\n",
|
| 59 |
+
"os.chdir('OpenTrack')\n",
|
| 60 |
+
"print(f\"Current directory: {os.getcwd()}\")"
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"cell_type": "markdown",
|
| 65 |
+
"metadata": {},
|
| 66 |
+
"source": [
|
| 67 |
+
"## 3. Install Dependencies"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": null,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [],
|
| 75 |
+
"source": [
|
| 76 |
+
"# Install PyTorch (CPU version for compatibility)\n",
|
| 77 |
+
"!pip install -q torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cpu\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"# Install OpenTrack requirements\n",
|
| 80 |
+
"!pip install -q -r requirements.txt\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"# Install additional packages for video handling\n",
|
| 83 |
+
"!pip install -q imageio imageio-ffmpeg\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"print(\"✓ All dependencies installed\")"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"cell_type": "markdown",
|
| 90 |
+
"metadata": {},
|
| 91 |
+
"source": [
|
| 92 |
+
"## 4. Download Motion Capture Data"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": null,
|
| 98 |
+
"metadata": {},
|
| 99 |
+
"outputs": [],
|
| 100 |
+
"source": [
|
| 101 |
+
"from huggingface_hub import snapshot_download\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"# Create directory structure\n",
|
| 104 |
+
"mocap_dir = Path(\"data/mocap/lafan1/UnitreeG1\")\n",
|
| 105 |
+
"mocap_dir.mkdir(parents=True, exist_ok=True)\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"repo_id = \"robfiras/loco-mujoco-datasets\"\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"print(\"Downloading all mocap data from Lafan1/mocap/UnitreeG1...\")\n",
|
| 110 |
+
"print(\"This will download all .npz files concurrently.\\n\")\n",
|
| 111 |
+
"\n",
|
| 112 |
+
"try:\n",
|
| 113 |
+
" # Use snapshot_download with allow_patterns to download only the files we need\n",
|
| 114 |
+
" # This is much more efficient than downloading files one by one\n",
|
| 115 |
+
" snapshot_path = snapshot_download(\n",
|
| 116 |
+
" repo_id=repo_id,\n",
|
| 117 |
+
" repo_type=\"dataset\",\n",
|
| 118 |
+
" allow_patterns=\"Lafan1/mocap/UnitreeG1/*.npz\",\n",
|
| 119 |
+
" local_dir=\".\",\n",
|
| 120 |
+
" local_dir_use_symlinks=False\n",
|
| 121 |
+
" )\n",
|
| 122 |
+
" \n",
|
| 123 |
+
" print(f\"\\n✓ Download complete! Files saved to: {snapshot_path}\")\n",
|
| 124 |
+
" \n",
|
| 125 |
+
" # Verify files\n",
|
| 126 |
+
" npz_files = list(mocap_dir.glob(\"*.npz\"))\n",
|
| 127 |
+
" print(f\"✓ Found {len(npz_files)} .npz files in {mocap_dir}\")\n",
|
| 128 |
+
" \n",
|
| 129 |
+
" if npz_files:\n",
|
| 130 |
+
" print(\"\\nSample files:\")\n",
|
| 131 |
+
" for f in sorted(npz_files)[:10]: # Show first 10 files\n",
|
| 132 |
+
" print(f\" - {f.name}\")\n",
|
| 133 |
+
" if len(npz_files) > 10:\n",
|
| 134 |
+
" print(f\" ... and {len(npz_files) - 10} more files\")\n",
|
| 135 |
+
" \n",
|
| 136 |
+
"except Exception as e:\n",
|
| 137 |
+
" print(f\"⚠ Error downloading mocap data: {e}\")\n",
|
| 138 |
+
" print(\"\\nYou may need to download manually from:\")\n",
|
| 139 |
+
" print(\"https://huggingface.co/datasets/robfiras/loco-mujoco-datasets/tree/main/Lafan1/mocap/UnitreeG1\")\n",
|
| 140 |
+
" print(\"\\nOr check if you need to authenticate:\")\n",
|
| 141 |
+
" print(\" huggingface-cli login\")"
|
| 142 |
+
]
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"cell_type": "markdown",
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"source": [
|
| 148 |
+
"## 5. Helper Functions for Background Process Management"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"cell_type": "code",
|
| 153 |
+
"execution_count": null,
|
| 154 |
+
"metadata": {},
|
| 155 |
+
"outputs": [],
|
| 156 |
+
"source": [
|
| 157 |
+
"def run_command_with_output(cmd, description=\"Running command\"):\n",
|
| 158 |
+
" \"\"\"\n",
|
| 159 |
+
" Run a command and display output in real-time\n",
|
| 160 |
+
" \"\"\"\n",
|
| 161 |
+
" print(f\"\\n{'='*60}\")\n",
|
| 162 |
+
" print(f\"{description}\")\n",
|
| 163 |
+
" print(f\"Command: {' '.join(cmd)}\")\n",
|
| 164 |
+
" print(f\"{'='*60}\\n\")\n",
|
| 165 |
+
" \n",
|
| 166 |
+
" process = subprocess.Popen(\n",
|
| 167 |
+
" cmd,\n",
|
| 168 |
+
" stdout=subprocess.PIPE,\n",
|
| 169 |
+
" stderr=subprocess.STDOUT,\n",
|
| 170 |
+
" text=True,\n",
|
| 171 |
+
" bufsize=1,\n",
|
| 172 |
+
" universal_newlines=True\n",
|
| 173 |
+
" )\n",
|
| 174 |
+
" \n",
|
| 175 |
+
" # Read output line by line\n",
|
| 176 |
+
" for line in process.stdout:\n",
|
| 177 |
+
" print(line, end='')\n",
|
| 178 |
+
" \n",
|
| 179 |
+
" process.wait()\n",
|
| 180 |
+
" \n",
|
| 181 |
+
" if process.returncode == 0:\n",
|
| 182 |
+
" print(f\"\\n✓ {description} completed successfully\")\n",
|
| 183 |
+
" else:\n",
|
| 184 |
+
" print(f\"\\n⚠ {description} exited with code {process.returncode}\")\n",
|
| 185 |
+
" \n",
|
| 186 |
+
" return process.returncode\n",
|
| 187 |
+
"\n",
|
| 188 |
+
"\n",
|
| 189 |
+
"def find_latest_experiment(exp_name_pattern):\n",
|
| 190 |
+
" \"\"\"\n",
|
| 191 |
+
" Find the latest experiment folder matching the pattern\n",
|
| 192 |
+
" \"\"\"\n",
|
| 193 |
+
" logs_dir = Path(\"logs\")\n",
|
| 194 |
+
" if not logs_dir.exists():\n",
|
| 195 |
+
" return None\n",
|
| 196 |
+
" \n",
|
| 197 |
+
" # Find all matching experiments\n",
|
| 198 |
+
" experiments = sorted(\n",
|
| 199 |
+
" [d for d in logs_dir.iterdir() if d.is_dir() and exp_name_pattern in d.name],\n",
|
| 200 |
+
" key=lambda x: x.stat().st_mtime,\n",
|
| 201 |
+
" reverse=True\n",
|
| 202 |
+
" )\n",
|
| 203 |
+
" \n",
|
| 204 |
+
" return experiments[0].name if experiments else None\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"def find_generated_videos(output_dir=\"videos\"):\n",
|
| 208 |
+
" \"\"\"\n",
|
| 209 |
+
" Find all generated video files\n",
|
| 210 |
+
" \"\"\"\n",
|
| 211 |
+
" video_dir = Path(output_dir)\n",
|
| 212 |
+
" if not video_dir.exists():\n",
|
| 213 |
+
" # Try alternative locations\n",
|
| 214 |
+
" alternative_dirs = [\".\", \"logs\", \"outputs\"]\n",
|
| 215 |
+
" for alt_dir in alternative_dirs:\n",
|
| 216 |
+
" alt_path = Path(alt_dir)\n",
|
| 217 |
+
" videos = list(alt_path.glob(\"**/*.mp4\")) + list(alt_path.glob(\"**/*.gif\"))\n",
|
| 218 |
+
" if videos:\n",
|
| 219 |
+
" return sorted(videos, key=lambda x: x.stat().st_mtime, reverse=True)\n",
|
| 220 |
+
" return []\n",
|
| 221 |
+
" \n",
|
| 222 |
+
" videos = list(video_dir.glob(\"*.mp4\")) + list(video_dir.glob(\"*.gif\"))\n",
|
| 223 |
+
" return sorted(videos, key=lambda x: x.stat().st_mtime, reverse=True)\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"print(\"✓ Helper functions loaded\")"
|
| 226 |
+
]
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"cell_type": "markdown",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"source": [
|
| 232 |
+
"## 6. Quick Training (Debug Mode)\n",
|
| 233 |
+
"\n",
|
| 234 |
+
"We'll run a quick training session in debug mode. This won't produce a well-trained model but will verify everything works."
|
| 235 |
+
]
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"cell_type": "code",
|
| 239 |
+
"execution_count": null,
|
| 240 |
+
"metadata": {},
|
| 241 |
+
"outputs": [],
|
| 242 |
+
"source": [
|
| 243 |
+
"# Run quick training\n",
|
| 244 |
+
"cmd = [\n",
|
| 245 |
+
" 'python', 'train_policy.py',\n",
|
| 246 |
+
" '--exp_name', 'debug',\n",
|
| 247 |
+
" '--terrain_type', 'flat_terrain'\n",
|
| 248 |
+
"]\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"return_code = run_command_with_output(cmd, \"Training OpenTrack (debug mode)\")\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"# Find the experiment folder\n",
|
| 253 |
+
"exp_folder = find_latest_experiment('debug')\n",
|
| 254 |
+
"if exp_folder:\n",
|
| 255 |
+
" print(f\"\\n✓ Training completed! Experiment: {exp_folder}\")\n",
|
| 256 |
+
"else:\n",
|
| 257 |
+
" print(\"\\n⚠ Could not find experiment folder\")"
|
| 258 |
+
]
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"cell_type": "markdown",
|
| 262 |
+
"metadata": {},
|
| 263 |
+
"source": [
|
| 264 |
+
"## 7. Convert Checkpoint (Brax → PyTorch)"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"cell_type": "code",
|
| 269 |
+
"execution_count": null,
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"outputs": [],
|
| 272 |
+
"source": [
|
| 273 |
+
"# Get the latest experiment name\n",
|
| 274 |
+
"exp_folder = find_latest_experiment('debug')\n",
|
| 275 |
+
"\n",
|
| 276 |
+
"if exp_folder:\n",
|
| 277 |
+
" print(f\"Converting checkpoint for: {exp_folder}\")\n",
|
| 278 |
+
" \n",
|
| 279 |
+
" cmd = [\n",
|
| 280 |
+
" 'python', 'brax2torch.py',\n",
|
| 281 |
+
" '--exp_name', exp_folder\n",
|
| 282 |
+
" ]\n",
|
| 283 |
+
" \n",
|
| 284 |
+
" return_code = run_command_with_output(cmd, \"Converting Brax checkpoint to PyTorch\")\n",
|
| 285 |
+
"else:\n",
|
| 286 |
+
" print(\"⚠ No experiment found. Run training first.\")"
|
| 287 |
+
]
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"cell_type": "markdown",
|
| 291 |
+
"metadata": {},
|
| 292 |
+
"source": [
|
| 293 |
+
"## 8. Generate Videos (Headless Rendering)\n",
|
| 294 |
+
"\n",
|
| 295 |
+
"This will run the policy and generate videos using MuJoCo's headless renderer."
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "code",
|
| 300 |
+
"execution_count": null,
|
| 301 |
+
"metadata": {},
|
| 302 |
+
"outputs": [],
|
| 303 |
+
"source": [
|
| 304 |
+
"# Get the latest experiment name\n",
|
| 305 |
+
"exp_folder = find_latest_experiment('debug')\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"if exp_folder:\n",
|
| 308 |
+
" print(f\"Generating videos for: {exp_folder}\")\n",
|
| 309 |
+
" \n",
|
| 310 |
+
" # Use --use_renderer for headless video generation (NOT --use_viewer)\n",
|
| 311 |
+
" cmd = [\n",
|
| 312 |
+
" 'python', 'play_policy.py',\n",
|
| 313 |
+
" '--exp_name', exp_folder,\n",
|
| 314 |
+
" '--use_renderer',\n",
|
| 315 |
+
" # '--play_ref_motion', # Uncomment to also show reference motion\n",
|
| 316 |
+
" ]\n",
|
| 317 |
+
" \n",
|
| 318 |
+
" return_code = run_command_with_output(cmd, \"Generating videos with MuJoCo renderer\")\n",
|
| 319 |
+
" \n",
|
| 320 |
+
" print(\"\\n\" + \"=\"*60)\n",
|
| 321 |
+
" print(\"Searching for generated videos...\")\n",
|
| 322 |
+
" print(\"=\"*60)\n",
|
| 323 |
+
" \n",
|
| 324 |
+
" # Wait a moment for files to be written\n",
|
| 325 |
+
" time.sleep(2)\n",
|
| 326 |
+
" \n",
|
| 327 |
+
" # Find generated videos\n",
|
| 328 |
+
" videos = find_generated_videos()\n",
|
| 329 |
+
" \n",
|
| 330 |
+
" if videos:\n",
|
| 331 |
+
" print(f\"\\n✓ Found {len(videos)} video(s):\")\n",
|
| 332 |
+
" for video in videos:\n",
|
| 333 |
+
" print(f\" - {video}\")\n",
|
| 334 |
+
" else:\n",
|
| 335 |
+
" print(\"\\n⚠ No videos found. Checking alternative locations...\")\n",
|
| 336 |
+
" # Search more broadly\n",
|
| 337 |
+
" all_videos = list(Path(\".\").rglob(\"*.mp4\")) + list(Path(\".\").rglob(\"*.gif\"))\n",
|
| 338 |
+
" if all_videos:\n",
|
| 339 |
+
" print(f\"Found {len(all_videos)} video(s) in project:\")\n",
|
| 340 |
+
" for video in all_videos[:10]: # Show first 10\n",
|
| 341 |
+
" print(f\" - {video}\")\n",
|
| 342 |
+
"else:\n",
|
| 343 |
+
" print(\"⚠ No experiment found. Run training first.\")"
|
| 344 |
+
]
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"cell_type": "markdown",
|
| 348 |
+
"metadata": {},
|
| 349 |
+
"source": [
|
| 350 |
+
"## 9. Display Generated Videos"
|
| 351 |
+
]
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"cell_type": "code",
|
| 355 |
+
"execution_count": null,
|
| 356 |
+
"metadata": {},
|
| 357 |
+
"outputs": [],
|
| 358 |
+
"source": [
|
| 359 |
+
"# Find and display all generated videos\n",
|
| 360 |
+
"videos = find_generated_videos()\n",
|
| 361 |
+
"\n",
|
| 362 |
+
"if not videos:\n",
|
| 363 |
+
" # Try alternative search\n",
|
| 364 |
+
" videos = list(Path(\".\").rglob(\"*.mp4\")) + list(Path(\".\").rglob(\"*.gif\"))\n",
|
| 365 |
+
"\n",
|
| 366 |
+
"if videos:\n",
|
| 367 |
+
" print(f\"Displaying {len(videos)} video(s):\\n\")\n",
|
| 368 |
+
" \n",
|
| 369 |
+
" for i, video_path in enumerate(videos[:5]): # Display first 5 videos\n",
|
| 370 |
+
" print(f\"\\n{'='*60}\")\n",
|
| 371 |
+
" print(f\"Video {i+1}: {video_path.name}\")\n",
|
| 372 |
+
" print(f\"{'='*60}\")\n",
|
| 373 |
+
" \n",
|
| 374 |
+
" try:\n",
|
| 375 |
+
" if video_path.suffix == '.mp4':\n",
|
| 376 |
+
" display(Video(str(video_path), width=800, embed=True))\n",
|
| 377 |
+
" elif video_path.suffix == '.gif':\n",
|
| 378 |
+
" display(HTML(f'<img src=\"{video_path}\" width=\"800\">'))\n",
|
| 379 |
+
" except Exception as e:\n",
|
| 380 |
+
" print(f\"⚠ Error displaying video: {e}\")\n",
|
| 381 |
+
" print(f\"You can download it from: {video_path}\")\n",
|
| 382 |
+
"else:\n",
|
| 383 |
+
" print(\"⚠ No videos found.\")\n",
|
| 384 |
+
" print(\"\\nPossible reasons:\")\n",
|
| 385 |
+
" print(\"1. Training didn't complete successfully\")\n",
|
| 386 |
+
" print(\"2. Checkpoint conversion failed\")\n",
|
| 387 |
+
" print(\"3. Video generation failed\")\n",
|
| 388 |
+
" print(\"\\nCheck the output of previous cells for errors.\")"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
{
|
| 392 |
+
"cell_type": "markdown",
|
| 393 |
+
"metadata": {},
|
| 394 |
+
"source": [
|
| 395 |
+
"## 10. Optional: Generate Rough Terrain\n",
|
| 396 |
+
"\n",
|
| 397 |
+
"If you want to test on rough terrain, run this cell first to generate terrain data."
|
| 398 |
+
]
|
| 399 |
+
},
|
| 400 |
+
{
|
| 401 |
+
"cell_type": "code",
|
| 402 |
+
"execution_count": null,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"outputs": [],
|
| 405 |
+
"source": [
|
| 406 |
+
"# Generate rough terrain using Perlin noise\n",
|
| 407 |
+
"cmd = ['python', 'generate_terrain.py']\n",
|
| 408 |
+
"return_code = run_command_with_output(cmd, \"Generating rough terrain\")\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"print(\"\\n✓ Terrain generated! You can now train with --terrain_type rough_terrain\")"
|
| 411 |
+
]
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"cell_type": "markdown",
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"source": [
|
| 417 |
+
"## 11. Optional: Full Training (Takes Much Longer)\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"⚠️ Warning: This will take significant time and resources. Only run if you have GPU access and time."
|
| 420 |
+
]
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"cell_type": "code",
|
| 424 |
+
"execution_count": null,
|
| 425 |
+
"metadata": {},
|
| 426 |
+
"outputs": [],
|
| 427 |
+
"source": [
|
| 428 |
+
"# Full training (uncomment to run)\n",
|
| 429 |
+
"# cmd = [\n",
|
| 430 |
+
"# 'python', 'train_policy.py',\n",
|
| 431 |
+
"# '--exp_name', 'flat_terrain_full',\n",
|
| 432 |
+
"# '--terrain_type', 'flat_terrain'\n",
|
| 433 |
+
"# ]\n",
|
| 434 |
+
"# \n",
|
| 435 |
+
"# return_code = run_command_with_output(cmd, \"Full training on flat terrain\")\n",
|
| 436 |
+
"# \n",
|
| 437 |
+
"# # Then convert and play\n",
|
| 438 |
+
"# exp_folder = find_latest_experiment('flat_terrain_full')\n",
|
| 439 |
+
"# if exp_folder:\n",
|
| 440 |
+
"# !python brax2torch.py --exp_name {exp_folder}\n",
|
| 441 |
+
"# !python play_policy.py --exp_name {exp_folder} --use_renderer\n",
|
| 442 |
+
"\n",
|
| 443 |
+
"print(\"Full training cell ready (currently commented out)\")"
|
| 444 |
+
]
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"cell_type": "markdown",
|
| 448 |
+
"metadata": {},
|
| 449 |
+
"source": [
|
| 450 |
+
"## Summary\n",
|
| 451 |
+
"\n",
|
| 452 |
+
"This notebook demonstrates:\n",
|
| 453 |
+
"1. ✅ Setting up OpenTrack in a Jupyter environment\n",
|
| 454 |
+
"2. ✅ Running training (debug mode for quick testing)\n",
|
| 455 |
+
"3. ✅ Converting Brax checkpoints to PyTorch\n",
|
| 456 |
+
"4. ✅ Generating videos using headless MuJoCo renderer\n",
|
| 457 |
+
"5. ✅ Displaying videos in the notebook\n",
|
| 458 |
+
"\n",
|
| 459 |
+
"**Next Steps:**\n",
|
| 460 |
+
"- Download more mocap files for better training\n",
|
| 461 |
+
"- Run full training with GPU support\n",
|
| 462 |
+
"- Test on rough terrain\n",
|
| 463 |
+
"- Experiment with reference motion playback\n",
|
| 464 |
+
"\n",
|
| 465 |
+
"**Troubleshooting:**\n",
|
| 466 |
+
"- If videos aren't generated, check that `--use_renderer` flag is used (not `--use_viewer`)\n",
|
| 467 |
+
"- Ensure MuJoCo can run headless (may need `xvfb` on some systems)\n",
|
| 468 |
+
"- Check `logs/` directory for experiment outputs"
|
| 469 |
+
]
|
| 470 |
+
}
|
| 471 |
+
],
|
| 472 |
+
"metadata": {
|
| 473 |
+
"kernelspec": {
|
| 474 |
+
"display_name": "Python 3",
|
| 475 |
+
"language": "python",
|
| 476 |
+
"name": "python3"
|
| 477 |
+
},
|
| 478 |
+
"language_info": {
|
| 479 |
+
"codemirror_mode": {
|
| 480 |
+
"name": "ipython",
|
| 481 |
+
"version": 3
|
| 482 |
+
},
|
| 483 |
+
"file_extension": ".py",
|
| 484 |
+
"mimetype": "text/x-python",
|
| 485 |
+
"name": "python",
|
| 486 |
+
"nbconvert_exporter": "python",
|
| 487 |
+
"pygments_lexer": "ipython3",
|
| 488 |
+
"version": "3.12.0"
|
| 489 |
+
}
|
| 490 |
+
},
|
| 491 |
+
"nbformat": 4,
|
| 492 |
+
"nbformat_minor": 4
|
| 493 |
+
}
|