Update: Face Verfication added
Browse files- README.md +106 -10
- app.py +216 -25
- releaf_ai.py +50 -4
- requirements.txt +9 -6
README.md
CHANGED
|
@@ -1,12 +1,108 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
| 1 |
+
# ReLeaf AI API with Face Verification
|
| 2 |
+
|
| 3 |
+
This is the backend API for the ReLeaf mobile app, providing AI-powered eco-action recognition and face verification capabilities.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
- **Eco-Action Recognition**: Analyze images/videos of environmental activities and assign points
|
| 8 |
+
- **Face Verification**: Verify user identity through facial recognition
|
| 9 |
+
- **Multi-format Support**: Process both images and videos
|
| 10 |
+
- **Secure Authentication**: Face-based verification for action submissions
|
| 11 |
+
|
| 12 |
+
## API Endpoints
|
| 13 |
+
|
| 14 |
+
### 1. Health Check
|
| 15 |
+
```
|
| 16 |
+
GET /
|
| 17 |
+
```
|
| 18 |
+
Returns API status and information.
|
| 19 |
+
|
| 20 |
+
### 2. Face Verification
|
| 21 |
+
```
|
| 22 |
+
POST /verify-face
|
| 23 |
+
```
|
| 24 |
+
**Parameters:**
|
| 25 |
+
- `reference_face`: Image file (stored user face)
|
| 26 |
+
- `current_face`: Image file (captured face for verification)
|
| 27 |
+
|
| 28 |
+
**Response:**
|
| 29 |
+
```json
|
| 30 |
+
{
|
| 31 |
+
"verified": true,
|
| 32 |
+
"similarity": 85.6,
|
| 33 |
+
"threshold": 60.0,
|
| 34 |
+
"message": "Face verified successfully"
|
| 35 |
+
}
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
### 3. Eco-Action Analysis
|
| 39 |
+
```
|
| 40 |
+
POST /predict
|
| 41 |
+
```
|
| 42 |
+
**Parameters:**
|
| 43 |
+
- `file`: Image or video file of eco-action
|
| 44 |
+
- `reference_face`: (Optional) Reference face image for verification
|
| 45 |
+
|
| 46 |
+
**Response:**
|
| 47 |
+
```json
|
| 48 |
+
{
|
| 49 |
+
"points": 15,
|
| 50 |
+
"task": "Recycling plastic bottles",
|
| 51 |
+
"face_verified": true,
|
| 52 |
+
"similarity": 87.3,
|
| 53 |
+
"raw": "Full AI response..."
|
| 54 |
+
}
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Supported Activities
|
| 58 |
+
|
| 59 |
+
- β»οΈ Recycling and waste management
|
| 60 |
+
- π± Tree planting and gardening
|
| 61 |
+
- β‘ Clean energy usage
|
| 62 |
+
- π Sustainable transportation
|
| 63 |
+
- π§Ή Environmental cleanup
|
| 64 |
+
- π§ Water conservation
|
| 65 |
+
- π Composting
|
| 66 |
+
- π Sustainable shopping
|
| 67 |
+
|
| 68 |
+
## Scoring System
|
| 69 |
+
|
| 70 |
+
Activities are scored from 0-30 points based on:
|
| 71 |
+
- **Impact Level**: Higher impact = more points
|
| 72 |
+
- **Authenticity**: Genuine activities get full points
|
| 73 |
+
- **Scale**: Larger scale activities get bonus points
|
| 74 |
+
- **Innovation**: Creative eco-solutions get extra recognition
|
| 75 |
+
|
| 76 |
+
## Face Verification
|
| 77 |
+
|
| 78 |
+
- **Threshold**: 60% similarity required for verification
|
| 79 |
+
- **Security**: Prevents fraudulent submissions
|
| 80 |
+
- **Privacy**: Face data processed in real-time, not stored
|
| 81 |
+
- **Accuracy**: Uses state-of-the-art face recognition algorithms
|
| 82 |
+
|
| 83 |
+
## Technology Stack
|
| 84 |
+
|
| 85 |
+
- **FastAPI**: High-performance web framework
|
| 86 |
+
- **Together AI**: Advanced language model for activity recognition
|
| 87 |
+
- **OpenCV**: Computer vision processing
|
| 88 |
+
- **face_recognition**: Facial recognition and verification
|
| 89 |
+
- **PIL/Pillow**: Image processing
|
| 90 |
+
|
| 91 |
+
## Environment Variables
|
| 92 |
+
|
| 93 |
+
- `TOGETHER_API_KEY`: API key for Together AI service
|
| 94 |
+
|
| 95 |
+
## Local Development
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
pip install -r requirements.txt
|
| 99 |
+
uvicorn app:app --reload --host 0.0.0.0 --port 7860
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Deployment
|
| 103 |
+
|
| 104 |
+
This API is designed to run on Hugging Face Spaces with automatic scaling and GPU acceleration.
|
| 105 |
+
|
| 106 |
---
|
| 107 |
|
| 108 |
+
**ReLeaf** - Making sustainability fun, rewarding, and secure! π±
|
app.py
CHANGED
|
@@ -7,81 +7,272 @@ import base64
|
|
| 7 |
import cv2
|
| 8 |
import io
|
| 9 |
import re
|
|
|
|
|
|
|
| 10 |
from together import Together
|
| 11 |
-
import releaf_ai
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
-
#
|
| 16 |
API_KEY = "1495bcdf0c72ed1e15d0e3e31e4301bd665cb28f2291bcc388164ed745a7aa24"
|
| 17 |
client = Together(api_key=API_KEY)
|
| 18 |
MODEL_NAME = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
| 19 |
-
|
| 20 |
SYSTEM_PROMPT = releaf_ai.SYSTEM_PROMPT
|
| 21 |
|
| 22 |
def encode_image_to_base64(image: Image.Image) -> str:
|
|
|
|
| 23 |
buffered = io.BytesIO()
|
| 24 |
image.save(buffered, format="JPEG")
|
| 25 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 26 |
|
| 27 |
def extract_score(text: str):
|
|
|
|
| 28 |
match = re.search(r"(?i)Score:\s*(\d+)", text)
|
| 29 |
return int(match.group(1)) if match else None
|
| 30 |
|
| 31 |
def extract_activity(text: str):
|
|
|
|
| 32 |
match = re.search(r"(?i)Detected Activity:\s*(.+?)\n", text)
|
| 33 |
return match.group(1).strip() if match else "Unknown"
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@app.post("/predict")
|
| 36 |
-
async def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if file.content_type.startswith("image"):
|
| 39 |
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
| 40 |
-
|
| 41 |
elif file.content_type.startswith("video"):
|
| 42 |
-
|
|
|
|
| 43 |
with open(temp_path, "wb") as f:
|
| 44 |
f.write(await file.read())
|
| 45 |
-
|
|
|
|
| 46 |
cap = cv2.VideoCapture(temp_path)
|
| 47 |
-
|
| 48 |
-
interval = max(
|
| 49 |
-
|
| 50 |
frames = []
|
| 51 |
for i in range(9):
|
| 52 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
| 53 |
ret, frame = cap.read()
|
| 54 |
if ret:
|
| 55 |
-
|
| 56 |
-
img = Image.fromarray(
|
| 57 |
frames.append(img)
|
|
|
|
| 58 |
cap.release()
|
| 59 |
os.remove(temp_path)
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
w, h = frames[0].size
|
| 62 |
grid = Image.new("RGB", (3 * w, 3 * h))
|
| 63 |
for idx, frame in enumerate(frames):
|
| 64 |
grid.paste(frame, ((idx % 3) * w, (idx // 3) * h))
|
| 65 |
image = grid
|
| 66 |
-
|
| 67 |
else:
|
| 68 |
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 69 |
-
|
|
|
|
| 70 |
b64_img = encode_image_to_base64(image)
|
|
|
|
|
|
|
| 71 |
messages = [
|
| 72 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 73 |
{"role": "user", "content": [
|
| 74 |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_img}"}}
|
| 75 |
]}
|
| 76 |
]
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
except Exception as e:
|
| 87 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import cv2
|
| 8 |
import io
|
| 9 |
import re
|
| 10 |
+
import face_recognition
|
| 11 |
+
import numpy as np
|
| 12 |
from together import Together
|
| 13 |
+
import releaf_ai
|
| 14 |
|
| 15 |
app = FastAPI()
|
| 16 |
|
| 17 |
+
# Initialize Together client
|
| 18 |
API_KEY = "1495bcdf0c72ed1e15d0e3e31e4301bd665cb28f2291bcc388164ed745a7aa24"
|
| 19 |
client = Together(api_key=API_KEY)
|
| 20 |
MODEL_NAME = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
|
|
|
|
| 21 |
SYSTEM_PROMPT = releaf_ai.SYSTEM_PROMPT
|
| 22 |
|
| 23 |
def encode_image_to_base64(image: Image.Image) -> str:
|
| 24 |
+
"""Convert PIL Image to base64 string"""
|
| 25 |
buffered = io.BytesIO()
|
| 26 |
image.save(buffered, format="JPEG")
|
| 27 |
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 28 |
|
| 29 |
def extract_score(text: str):
|
| 30 |
+
"""Extract score from AI response"""
|
| 31 |
match = re.search(r"(?i)Score:\s*(\d+)", text)
|
| 32 |
return int(match.group(1)) if match else None
|
| 33 |
|
| 34 |
def extract_activity(text: str):
|
| 35 |
+
"""Extract activity from AI response"""
|
| 36 |
match = re.search(r"(?i)Detected Activity:\s*(.+?)\n", text)
|
| 37 |
return match.group(1).strip() if match else "Unknown"
|
| 38 |
|
| 39 |
+
def verify_faces(reference_face_bytes: bytes, current_face_bytes: bytes) -> dict:
|
| 40 |
+
"""
|
| 41 |
+
Verify if two face images match
|
| 42 |
+
Returns: {"verified": bool, "similarity": float, "error": str}
|
| 43 |
+
"""
|
| 44 |
+
try:
|
| 45 |
+
# Convert bytes to numpy arrays
|
| 46 |
+
ref_np = np.frombuffer(reference_face_bytes, np.uint8)
|
| 47 |
+
curr_np = np.frombuffer(current_face_bytes, np.uint8)
|
| 48 |
+
|
| 49 |
+
# Decode images
|
| 50 |
+
ref_img = cv2.imdecode(ref_np, cv2.IMREAD_COLOR)
|
| 51 |
+
curr_img = cv2.imdecode(curr_np, cv2.IMREAD_COLOR)
|
| 52 |
+
|
| 53 |
+
if ref_img is None or curr_img is None:
|
| 54 |
+
return {"verified": False, "similarity": 0.0, "error": "Could not decode images"}
|
| 55 |
+
|
| 56 |
+
# Convert BGR to RGB (face_recognition expects RGB)
|
| 57 |
+
ref_rgb = cv2.cvtColor(ref_img, cv2.COLOR_BGR2RGB)
|
| 58 |
+
curr_rgb = cv2.cvtColor(curr_img, cv2.COLOR_BGR2RGB)
|
| 59 |
+
|
| 60 |
+
# Get face encodings
|
| 61 |
+
ref_encodings = face_recognition.face_encodings(ref_rgb)
|
| 62 |
+
curr_encodings = face_recognition.face_encodings(curr_rgb)
|
| 63 |
+
|
| 64 |
+
if len(ref_encodings) == 0:
|
| 65 |
+
return {"verified": False, "similarity": 0.0, "error": "No face found in reference image"}
|
| 66 |
+
|
| 67 |
+
if len(curr_encodings) == 0:
|
| 68 |
+
return {"verified": False, "similarity": 0.0, "error": "No face found in current image"}
|
| 69 |
+
|
| 70 |
+
# Use the first face found in each image
|
| 71 |
+
ref_encoding = ref_encodings[0]
|
| 72 |
+
curr_encoding = curr_encodings[0]
|
| 73 |
+
|
| 74 |
+
# Calculate face distance (lower = more similar)
|
| 75 |
+
face_distance = face_recognition.face_distance([ref_encoding], curr_encoding)[0]
|
| 76 |
+
|
| 77 |
+
# Convert distance to similarity percentage (0-100)
|
| 78 |
+
similarity = max(0, (1 - face_distance) * 100)
|
| 79 |
+
|
| 80 |
+
# Verification threshold (adjust as needed)
|
| 81 |
+
VERIFICATION_THRESHOLD = 60.0 # 60% similarity required
|
| 82 |
+
verified = similarity >= VERIFICATION_THRESHOLD
|
| 83 |
+
|
| 84 |
+
return {
|
| 85 |
+
"verified": verified,
|
| 86 |
+
"similarity": round(similarity, 2),
|
| 87 |
+
"error": None
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
except Exception as e:
|
| 91 |
+
return {"verified": False, "similarity": 0.0, "error": str(e)}
|
| 92 |
+
|
| 93 |
+
@app.get("/")
|
| 94 |
+
async def root():
|
| 95 |
+
return {"message": "ReLeaf AI API with Face Verification", "status": "active"}
|
| 96 |
+
|
| 97 |
+
@app.post("/verify-face")
|
| 98 |
+
async def verify_face_endpoint(
|
| 99 |
+
reference_face: UploadFile = File(...),
|
| 100 |
+
current_face: UploadFile = File(...)
|
| 101 |
+
):
|
| 102 |
+
"""
|
| 103 |
+
Standalone face verification endpoint
|
| 104 |
+
"""
|
| 105 |
+
try:
|
| 106 |
+
# Validate file types
|
| 107 |
+
if not reference_face.content_type.startswith("image"):
|
| 108 |
+
raise HTTPException(status_code=400, detail="Reference face must be an image")
|
| 109 |
+
|
| 110 |
+
if not current_face.content_type.startswith("image"):
|
| 111 |
+
raise HTTPException(status_code=400, detail="Current face must be an image")
|
| 112 |
+
|
| 113 |
+
# Read file bytes
|
| 114 |
+
ref_bytes = await reference_face.read()
|
| 115 |
+
curr_bytes = await current_face.read()
|
| 116 |
+
|
| 117 |
+
# Perform face verification
|
| 118 |
+
result = verify_faces(ref_bytes, curr_bytes)
|
| 119 |
+
|
| 120 |
+
if result["error"]:
|
| 121 |
+
raise HTTPException(status_code=400, detail=result["error"])
|
| 122 |
+
|
| 123 |
+
return JSONResponse({
|
| 124 |
+
"verified": result["verified"],
|
| 125 |
+
"similarity": result["similarity"],
|
| 126 |
+
"threshold": 60.0,
|
| 127 |
+
"message": "Face verified successfully" if result["verified"] else "Face verification failed"
|
| 128 |
+
})
|
| 129 |
+
|
| 130 |
+
except HTTPException:
|
| 131 |
+
raise
|
| 132 |
+
except Exception as e:
|
| 133 |
+
raise HTTPException(status_code=500, detail=f"Face verification error: {str(e)}")
|
| 134 |
+
|
| 135 |
@app.post("/predict")
|
| 136 |
+
async def predict(
|
| 137 |
+
file: UploadFile = File(...),
|
| 138 |
+
reference_face: UploadFile = File(None)
|
| 139 |
+
):
|
| 140 |
+
"""
|
| 141 |
+
Main prediction endpoint with optional face verification
|
| 142 |
+
"""
|
| 143 |
try:
|
| 144 |
+
face_verification_result = None
|
| 145 |
+
|
| 146 |
+
# Perform face verification if reference face is provided
|
| 147 |
+
if reference_face and reference_face.filename:
|
| 148 |
+
if not reference_face.content_type.startswith("image"):
|
| 149 |
+
raise HTTPException(status_code=400, detail="Reference face must be an image")
|
| 150 |
+
|
| 151 |
+
# Extract face from the action image/video for verification
|
| 152 |
+
action_file_bytes = await file.read()
|
| 153 |
+
ref_face_bytes = await reference_face.read()
|
| 154 |
+
|
| 155 |
+
# Reset file position for later processing
|
| 156 |
+
await file.seek(0)
|
| 157 |
+
|
| 158 |
+
# For video files, extract a frame first
|
| 159 |
+
if file.content_type.startswith("video"):
|
| 160 |
+
# Save video temporarily
|
| 161 |
+
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 162 |
+
with open(temp_path, "wb") as f:
|
| 163 |
+
f.write(action_file_bytes)
|
| 164 |
+
|
| 165 |
+
# Extract first frame for face verification
|
| 166 |
+
cap = cv2.VideoCapture(temp_path)
|
| 167 |
+
ret, frame = cap.read()
|
| 168 |
+
cap.release()
|
| 169 |
+
os.remove(temp_path)
|
| 170 |
+
|
| 171 |
+
if ret:
|
| 172 |
+
# Convert frame to bytes
|
| 173 |
+
_, buffer = cv2.imencode('.jpg', frame)
|
| 174 |
+
action_face_bytes = buffer.tobytes()
|
| 175 |
+
else:
|
| 176 |
+
raise HTTPException(status_code=400, detail="Could not extract frame from video")
|
| 177 |
+
else:
|
| 178 |
+
action_face_bytes = action_file_bytes
|
| 179 |
+
|
| 180 |
+
# Verify faces
|
| 181 |
+
face_verification_result = verify_faces(ref_face_bytes, action_face_bytes)
|
| 182 |
+
|
| 183 |
+
# If face verification fails, return early
|
| 184 |
+
if not face_verification_result["verified"]:
|
| 185 |
+
return JSONResponse({
|
| 186 |
+
"points": 0,
|
| 187 |
+
"task": "Face verification failed",
|
| 188 |
+
"face_verified": False,
|
| 189 |
+
"similarity": face_verification_result["similarity"],
|
| 190 |
+
"error": face_verification_result["error"] or "Face does not match registered user",
|
| 191 |
+
"raw": "Face verification failed - action not processed"
|
| 192 |
+
})
|
| 193 |
+
|
| 194 |
+
# Process the action image/video for AI scoring
|
| 195 |
if file.content_type.startswith("image"):
|
| 196 |
image = Image.open(io.BytesIO(await file.read())).convert("RGB")
|
|
|
|
| 197 |
elif file.content_type.startswith("video"):
|
| 198 |
+
# Create temporary file for video processing
|
| 199 |
+
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
|
| 200 |
with open(temp_path, "wb") as f:
|
| 201 |
f.write(await file.read())
|
| 202 |
+
|
| 203 |
+
# Extract frames from video
|
| 204 |
cap = cv2.VideoCapture(temp_path)
|
| 205 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 206 |
+
interval = max(total_frames // 9, 1)
|
| 207 |
+
|
| 208 |
frames = []
|
| 209 |
for i in range(9):
|
| 210 |
cap.set(cv2.CAP_PROP_POS_FRAMES, i * interval)
|
| 211 |
ret, frame = cap.read()
|
| 212 |
if ret:
|
| 213 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 214 |
+
img = Image.fromarray(frame_rgb).resize((256, 256))
|
| 215 |
frames.append(img)
|
| 216 |
+
|
| 217 |
cap.release()
|
| 218 |
os.remove(temp_path)
|
| 219 |
+
|
| 220 |
+
if not frames:
|
| 221 |
+
raise HTTPException(status_code=400, detail="Could not extract frames from video")
|
| 222 |
+
|
| 223 |
+
# Create grid of frames
|
| 224 |
w, h = frames[0].size
|
| 225 |
grid = Image.new("RGB", (3 * w, 3 * h))
|
| 226 |
for idx, frame in enumerate(frames):
|
| 227 |
grid.paste(frame, ((idx % 3) * w, (idx // 3) * h))
|
| 228 |
image = grid
|
|
|
|
| 229 |
else:
|
| 230 |
raise HTTPException(status_code=400, detail="Unsupported file type")
|
| 231 |
+
|
| 232 |
+
# Convert image to base64 for AI processing
|
| 233 |
b64_img = encode_image_to_base64(image)
|
| 234 |
+
|
| 235 |
+
# Prepare messages for AI
|
| 236 |
messages = [
|
| 237 |
{"role": "system", "content": SYSTEM_PROMPT},
|
| 238 |
{"role": "user", "content": [
|
| 239 |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64_img}"}}
|
| 240 |
]}
|
| 241 |
]
|
| 242 |
+
|
| 243 |
+
# Get AI response
|
| 244 |
+
response = client.chat.completions.create(
|
| 245 |
+
model=MODEL_NAME,
|
| 246 |
+
messages=messages
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
ai_reply = response.choices[0].message.content
|
| 250 |
+
|
| 251 |
+
# Extract score and activity from AI response
|
| 252 |
+
points = extract_score(ai_reply)
|
| 253 |
+
task = extract_activity(ai_reply)
|
| 254 |
+
|
| 255 |
+
# Prepare final response
|
| 256 |
+
result = {
|
| 257 |
+
"points": points or 0,
|
| 258 |
+
"task": task,
|
| 259 |
+
"raw": ai_reply
|
| 260 |
+
}
|
| 261 |
+
|
| 262 |
+
# Add face verification results if performed
|
| 263 |
+
if face_verification_result:
|
| 264 |
+
result.update({
|
| 265 |
+
"face_verified": face_verification_result["verified"],
|
| 266 |
+
"similarity": face_verification_result["similarity"]
|
| 267 |
+
})
|
| 268 |
+
|
| 269 |
+
return JSONResponse(result)
|
| 270 |
+
|
| 271 |
+
except HTTPException:
|
| 272 |
+
raise
|
| 273 |
except Exception as e:
|
| 274 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
| 275 |
+
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
import uvicorn
|
| 278 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
releaf_ai.py
CHANGED
|
@@ -1,7 +1,53 @@
|
|
| 1 |
SYSTEM_PROMPT = """
|
| 2 |
-
You are an
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
|
|
|
| 1 |
SYSTEM_PROMPT = """
|
| 2 |
+
You are an AI assistant for ReLeaf, an eco-friendly mobile app that gamifies environmental actions. Your job is to analyze images or videos of environmental activities and provide scoring based on their impact and authenticity.
|
| 3 |
|
| 4 |
+
**Your Task:**
|
| 5 |
+
1. Analyze the provided image/video for environmental activities
|
| 6 |
+
2. Determine if the activity is genuine and impactful
|
| 7 |
+
3. Assign points based on the activity type and quality
|
| 8 |
+
4. Identify the specific eco-action performed
|
| 9 |
+
|
| 10 |
+
**Scoring Guidelines:**
|
| 11 |
+
- **Recycling/Waste Management:** 5-15 points
|
| 12 |
+
- Proper sorting: 10-15 points
|
| 13 |
+
- General recycling: 5-10 points
|
| 14 |
+
- **Tree Planting/Gardening:** 15-25 points
|
| 15 |
+
- Tree planting: 20-25 points
|
| 16 |
+
- Garden maintenance: 15-20 points
|
| 17 |
+
- **Clean Energy Usage:** 20-30 points
|
| 18 |
+
- Solar panels: 25-30 points
|
| 19 |
+
- Wind energy: 20-25 points
|
| 20 |
+
- **Transportation:** 5-20 points
|
| 21 |
+
- Public transport: 10-15 points
|
| 22 |
+
- Cycling/Walking: 15-20 points
|
| 23 |
+
- Electric vehicles: 5-10 points
|
| 24 |
+
- **Cleanup Activities:** 10-25 points
|
| 25 |
+
- Beach/park cleanup: 20-25 points
|
| 26 |
+
- Street cleanup: 10-15 points
|
| 27 |
+
- **Water Conservation:** 10-20 points
|
| 28 |
+
- **Composting:** 15-20 points
|
| 29 |
+
- **Sustainable Shopping:** 5-15 points
|
| 30 |
+
|
| 31 |
+
**Response Format:**
|
| 32 |
+
Always respond in this exact format:
|
| 33 |
+
|
| 34 |
+
Detected Activity: [Brief description of the activity]
|
| 35 |
+
Score: [Number between 0-30]
|
| 36 |
+
Explanation: [2-3 sentences explaining why this score was given and the environmental impact]
|
| 37 |
+
|
| 38 |
+
**Important Rules:**
|
| 39 |
+
- Only award points for genuine environmental activities
|
| 40 |
+
- If no clear eco-activity is visible, give 0 points
|
| 41 |
+
- Be strict about authenticity - staged or fake activities get lower scores
|
| 42 |
+
- Consider the scale and impact of the activity
|
| 43 |
+
- Reward innovative or high-impact actions with bonus points
|
| 44 |
+
- Maximum score is 30 points for exceptional activities
|
| 45 |
+
|
| 46 |
+
**Examples:**
|
| 47 |
+
- Image of someone properly sorting recyclables β "Detected Activity: Recycling plastic bottles and paper, Score: 12"
|
| 48 |
+
- Video of tree planting β "Detected Activity: Planting a tree sapling, Score: 22"
|
| 49 |
+
- Image of solar panels β "Detected Activity: Using solar energy, Score: 28"
|
| 50 |
+
- Random selfie with no eco-activity β "Detected Activity: No environmental activity detected, Score: 0"
|
| 51 |
+
|
| 52 |
+
Analyze the provided image/video and respond accordingly.
|
| 53 |
"""
|
requirements.txt
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
-
fastapi
|
| 2 |
-
uvicorn
|
| 3 |
-
|
| 4 |
-
opencv-python
|
| 5 |
-
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn[standard]==0.24.0
|
| 3 |
+
pillow==10.1.0
|
| 4 |
+
opencv-python-headless==4.8.1.78
|
| 5 |
+
face-recognition==1.3.0
|
| 6 |
+
numpy==1.24.3
|
| 7 |
+
together==0.2.7
|
| 8 |
+
python-multipart==0.0.6
|
| 9 |
+
dlib==19.24.2
|