Spaces:
Runtime error
Runtime error
Commit
·
c09cb0e
1
Parent(s):
281252e
change codet5p-770m
Browse files- app-autogptq.py +70 -0
- app.py +8 -43
- requirements.txt +2 -1
app-autogptq.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, pipeline, logging
|
| 4 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 5 |
+
|
| 6 |
+
model_name_or_path = "TheBloke/WizardCoder-Guanaco-15B-V1.1-GPTQ"
|
| 7 |
+
model_basename = "gptq_model-4bit-128g"
|
| 8 |
+
|
| 9 |
+
use_triton = False
|
| 10 |
+
|
| 11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
| 14 |
+
|
| 15 |
+
quantize_config = BaseQuantizeConfig(
|
| 16 |
+
bits=4, # quantize model to 4-bit
|
| 17 |
+
group_size=128, # it is recommended to set the value to 128
|
| 18 |
+
desc_act=False, # set to False can significantly speed up inference but the perplexity may slightly bad
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
| 22 |
+
model_basename=model_basename,
|
| 23 |
+
use_safetensors=True,
|
| 24 |
+
trust_remote_code=False,
|
| 25 |
+
device=device,
|
| 26 |
+
use_triton=use_triton,
|
| 27 |
+
quantize_config=quantize_config,
|
| 28 |
+
cache_dir="models/"
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
To download from a specific branch, use the revision parameter, as in this example:
|
| 33 |
+
|
| 34 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
| 35 |
+
revision="gptq-4bit-32g-actorder_True",
|
| 36 |
+
model_basename=model_basename,
|
| 37 |
+
use_safetensors=True,
|
| 38 |
+
trust_remote_code=False,
|
| 39 |
+
device="cuda:0",
|
| 40 |
+
quantize_config=None)
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def code_gen(text):
|
| 45 |
+
logging.set_verbosity(logging.CRITICAL)
|
| 46 |
+
|
| 47 |
+
print("*** Pipeline:")
|
| 48 |
+
pipe = pipeline(
|
| 49 |
+
"text-generation",
|
| 50 |
+
model=model,
|
| 51 |
+
tokenizer=tokenizer,
|
| 52 |
+
max_new_tokens=124,
|
| 53 |
+
temperature=0.7,
|
| 54 |
+
top_p=0.95,
|
| 55 |
+
repetition_penalty=1.15
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
response = pipe(text)
|
| 59 |
+
print(response)
|
| 60 |
+
|
| 61 |
+
return response[0]['generated_text']
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
iface = gr.Interface(fn=code_gen,
|
| 65 |
+
inputs=gr.inputs.Textbox(
|
| 66 |
+
label="Input Source Code"),
|
| 67 |
+
outputs="text",
|
| 68 |
+
title="Code Generation")
|
| 69 |
+
|
| 70 |
+
iface.launch()
|
app.py
CHANGED
|
@@ -1,57 +1,22 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import AutoTokenizer, pipeline, logging
|
| 4 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 5 |
|
| 6 |
-
model_name_or_path = "TheBloke/WizardCoder-Guanaco-15B-V1.1-GPTQ"
|
| 7 |
-
model_basename = "gptq_model-4bit-128g"
|
| 8 |
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
| 14 |
-
|
| 15 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
| 16 |
-
model_basename=model_basename,
|
| 17 |
-
use_safetensors=True,
|
| 18 |
-
trust_remote_code=False,
|
| 19 |
-
device=device,
|
| 20 |
-
use_triton=use_triton,
|
| 21 |
-
quantize_config=None,
|
| 22 |
-
cache_dir="models/"
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
"""
|
| 26 |
-
To download from a specific branch, use the revision parameter, as in this example:
|
| 27 |
-
|
| 28 |
-
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
| 29 |
-
revision="gptq-4bit-32g-actorder_True",
|
| 30 |
-
model_basename=model_basename,
|
| 31 |
-
use_safetensors=True,
|
| 32 |
-
trust_remote_code=False,
|
| 33 |
-
device="cuda:0",
|
| 34 |
-
quantize_config=None)
|
| 35 |
-
"""
|
| 36 |
|
| 37 |
|
| 38 |
def code_gen(text):
|
| 39 |
-
# input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
| 40 |
-
# output = model.generate(
|
| 41 |
-
# inputs=input_ids, temperature=0.7, max_new_tokens=124)
|
| 42 |
-
# print(tokenizer.decode(output[0]))
|
| 43 |
-
|
| 44 |
-
# Inference can also be done using transformers' pipeline
|
| 45 |
-
|
| 46 |
-
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
| 47 |
logging.set_verbosity(logging.CRITICAL)
|
| 48 |
|
| 49 |
print("*** Pipeline:")
|
| 50 |
pipe = pipeline(
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
max_new_tokens=124,
|
| 55 |
temperature=0.7,
|
| 56 |
top_p=0.95,
|
| 57 |
repetition_penalty=1.15
|
|
@@ -59,7 +24,7 @@ def code_gen(text):
|
|
| 59 |
|
| 60 |
response = pipe(text)
|
| 61 |
print(response)
|
| 62 |
-
|
| 63 |
return response[0]['generated_text']
|
| 64 |
|
| 65 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, logging
|
|
|
|
| 4 |
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
checkpoint = "Salesforce/codet5p-770m"
|
| 7 |
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
| 9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, cache_dir="models/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def code_gen(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
logging.set_verbosity(logging.CRITICAL)
|
| 14 |
|
| 15 |
print("*** Pipeline:")
|
| 16 |
pipe = pipeline(
|
| 17 |
+
model=checkpoint,
|
| 18 |
+
# tokenizer=tokenizer,
|
| 19 |
+
max_new_tokens=64,
|
|
|
|
| 20 |
temperature=0.7,
|
| 21 |
top_p=0.95,
|
| 22 |
repetition_penalty=1.15
|
|
|
|
| 24 |
|
| 25 |
response = pipe(text)
|
| 26 |
print(response)
|
| 27 |
+
|
| 28 |
return response[0]['generated_text']
|
| 29 |
|
| 30 |
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ transformers
|
|
| 2 |
# tiktoken
|
| 3 |
torch
|
| 4 |
torchvision
|
| 5 |
-
auto-gptq
|
|
|
|
|
|
| 2 |
# tiktoken
|
| 3 |
torch
|
| 4 |
torchvision
|
| 5 |
+
auto-gptq
|
| 6 |
+
bitsandbytes
|