Spaces:
Runtime error
Runtime error
| from PIL import Image | |
| import gradio as gr | |
| from transformers import ViTFeatureExtractor, ViTForImageClassification | |
| import torch | |
| # Init model, transforms | |
| model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') | |
| transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') | |
| def predict(im): | |
| labels = {0:"0-2", 1: "3-9" , 2: "10-19", 3: "20-29", 4: "30-39", 5: "40-49", 6: "50-59", 7:"60-69",8:"more than 70"} | |
| # Transform our image and pass it through the model | |
| inputs = transforms(im, return_tensors='pt') | |
| output = model(**inputs) | |
| # Predicted Class probabilities | |
| proba = output.logits.softmax(1) | |
| # Predicted Classes | |
| preds = proba.argmax(1) | |
| values, indices = torch.topk(proba, k=5) | |
| return {labels[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])} | |
| inputs = [ | |
| gr.inputs.Image(type="pil", label="Input Image") | |
| ] | |
| title = "ViT-Age-Classification" | |
| description = "ViT-Age-Classification is used to categorize an individual's age using images" | |
| article = " <a href='https://huggingface.co/nateraw/vit-age-classifier'>ViT Age Classification Model Repo on Hugging Face Model Hub</a>" | |
| examples = ["stock_baby.webp","stock_teen.webp","stock_guy.jpg","stock_old_woman.jpg"] | |
| gr.Interface( | |
| predict, | |
| inputs, | |
| outputs = 'label', | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| theme="huggingface", | |
| ).launch(debug=True, enable_queue=True) |