Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						4977ce5
	
1
								Parent(s):
							
							5e09f7f
								
debugged app.py
Browse files- app.py +6 -10
- gradio_queue.db +0 -0
- stock_baby.webp +0 -0
- stock_guy.jpg +0 -0
- stock_old_woman.jpg +0 -0
- stock_teen.webp +0 -0
    	
        app.py
    CHANGED
    
    | @@ -8,7 +8,7 @@ model = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') | |
| 8 | 
             
            transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
         | 
| 9 |  | 
| 10 | 
             
            def predict(im):
         | 
| 11 | 
            -
                labels = {0:"0-2", 1: "3-9" , 2: "10-19", 3: "20-29", 4: "30-39", 5: "40-49", 6: "50-59"} 
         | 
| 12 | 
             
            # Transform our image and pass it through the model
         | 
| 13 | 
             
                inputs = transforms(im, return_tensors='pt')
         | 
| 14 | 
             
                output = model(**inputs)
         | 
| @@ -17,27 +17,23 @@ def predict(im): | |
| 17 | 
             
                proba = output.logits.softmax(1)
         | 
| 18 |  | 
| 19 | 
             
            # Predicted Classes
         | 
| 20 | 
            -
                preds = proba.argmax(1)
         | 
| 21 | 
             
                values, indices = torch.topk(proba, k=5)
         | 
| 22 | 
            -
                 | 
| 23 |  | 
| 24 |  | 
| 25 | 
             
                return {labels[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
         | 
| 26 |  | 
| 27 | 
            -
             | 
| 28 | 
            -
            print(predict(Image.open("baby.jpg")))
         | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
             
            inputs = [
         | 
| 32 | 
            -
                gr.inputs.Image(type="pil", label=" | 
| 33 | 
             
            ]
         | 
| 34 |  | 
| 35 |  | 
| 36 |  | 
| 37 | 
            -
            title = " | 
| 38 | 
             
            description = "ViT-Age-Classification is used to categorize an individual's age using images"
         | 
| 39 | 
             
            article = " <a href='https://huggingface.co/nateraw/vit-age-classifier'>Model Repo on Hugging Face Model Hub</a>"
         | 
| 40 | 
            -
            examples = [" | 
| 41 |  | 
| 42 | 
             
            gr.Interface(
         | 
| 43 | 
             
                predict,
         | 
|  | |
| 8 | 
             
            transforms = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
         | 
| 9 |  | 
| 10 | 
             
            def predict(im):
         | 
| 11 | 
            +
                labels = {0:"0-2", 1: "3-9" , 2: "10-19", 3: "20-29", 4: "30-39", 5: "40-49", 6: "50-59", 7:"60-69",8:"more than 70"} 
         | 
| 12 | 
             
            # Transform our image and pass it through the model
         | 
| 13 | 
             
                inputs = transforms(im, return_tensors='pt')
         | 
| 14 | 
             
                output = model(**inputs)
         | 
|  | |
| 17 | 
             
                proba = output.logits.softmax(1)
         | 
| 18 |  | 
| 19 | 
             
            # Predicted Classes
         | 
| 20 | 
            +
                #preds = proba.argmax(1)
         | 
| 21 | 
             
                values, indices = torch.topk(proba, k=5)
         | 
| 22 | 
            +
                
         | 
| 23 |  | 
| 24 |  | 
| 25 | 
             
                return {labels[i.item()]: v.item() for i, v in zip(indices.numpy()[0], values.detach().numpy()[0])}
         | 
| 26 |  | 
|  | |
|  | |
|  | |
|  | |
| 27 | 
             
            inputs = [
         | 
| 28 | 
            +
                gr.inputs.Image(type="pil", label="Input Image")
         | 
| 29 | 
             
            ]
         | 
| 30 |  | 
| 31 |  | 
| 32 |  | 
| 33 | 
            +
            title = "ViT-Age-Classification"
         | 
| 34 | 
             
            description = "ViT-Age-Classification is used to categorize an individual's age using images"
         | 
| 35 | 
             
            article = " <a href='https://huggingface.co/nateraw/vit-age-classifier'>Model Repo on Hugging Face Model Hub</a>"
         | 
| 36 | 
            +
            examples = ["stock_baby.webp","stock_teen.webp","stock_guy.jpg","stock_old_woman.jpg"]
         | 
| 37 |  | 
| 38 | 
             
            gr.Interface(
         | 
| 39 | 
             
                predict,
         | 
    	
        gradio_queue.db
    CHANGED
    
    | Binary files a/gradio_queue.db and b/gradio_queue.db differ | 
|  | 
    	
        stock_baby.webp
    ADDED
    
    |   | 
    	
        stock_guy.jpg
    ADDED
    
    |   | 
    	
        stock_old_woman.jpg
    ADDED
    
    |   | 
    	
        stock_teen.webp
    ADDED
    
    |   |