Spaces:
Running
Running
Initial commit
Browse files- .gitignore +5 -0
- dataset.py +56 -0
- translate.py +160 -0
.gitignore
CHANGED
|
@@ -122,3 +122,8 @@ dmypy.json
|
|
| 122 |
|
| 123 |
# Pyre type checker
|
| 124 |
.pyre/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Pyre type checker
|
| 124 |
.pyre/
|
| 125 |
+
|
| 126 |
+
# For IntelliJ
|
| 127 |
+
.idea/
|
| 128 |
+
|
| 129 |
+
debug/
|
dataset.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, TextIO, Dict, Optional
|
| 2 |
+
import torch
|
| 3 |
+
from torch.utils.data import IterableDataset
|
| 4 |
+
from torch.utils.data.dataset import T_co
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def blocks(files, size=65536):
|
| 8 |
+
while True:
|
| 9 |
+
b = files.read(size)
|
| 10 |
+
if not b:
|
| 11 |
+
break
|
| 12 |
+
yield b
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def count_lines(input_path: str) -> int:
|
| 16 |
+
with open(input_path, "r", encoding="utf8") as f:
|
| 17 |
+
return sum(bl.count("\n") for bl in blocks(f))
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class DatasetReader(IterableDataset):
|
| 21 |
+
def __init__(self, filename, tokenizer, max_length=128):
|
| 22 |
+
self.filename = filename
|
| 23 |
+
self.tokenizer = tokenizer
|
| 24 |
+
self.max_length = max_length
|
| 25 |
+
|
| 26 |
+
def preprocess(self, text: str):
|
| 27 |
+
return self.tokenizer(
|
| 28 |
+
text.rstrip().strip(),
|
| 29 |
+
padding="max_length",
|
| 30 |
+
truncation=True,
|
| 31 |
+
max_length=self.max_length,
|
| 32 |
+
return_tensors="pt",
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def __iter__(self):
|
| 36 |
+
file_itr = open(self.filename, "r")
|
| 37 |
+
mapped_itr = map(self.preprocess, file_itr)
|
| 38 |
+
return mapped_itr
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def collate_function(batch: List[T_co]) -> Dict[str, torch.Tensor]:
|
| 42 |
+
return {
|
| 43 |
+
"input_ids": torch.stack([item["input_ids"][0] for item in batch]),
|
| 44 |
+
"attention_mask": torch.stack([item["attention_mask"][0] for item in batch]),
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_dataloader(
|
| 49 |
+
filename: str, tokenizer: str, batch_size: int, max_length: int
|
| 50 |
+
) -> torch.utils.data.DataLoader:
|
| 51 |
+
dataset = DatasetReader(filename, tokenizer, max_length)
|
| 52 |
+
return torch.utils.data.DataLoader(
|
| 53 |
+
dataset,
|
| 54 |
+
batch_size=batch_size,
|
| 55 |
+
collate_fn=collate_function,
|
| 56 |
+
)
|
translate.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
from typing import TextIO, List
|
| 4 |
+
import argparse
|
| 5 |
+
import torch
|
| 6 |
+
from dataset import get_dataloader, count_lines
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def main(
|
| 11 |
+
sentences_path,
|
| 12 |
+
output_path,
|
| 13 |
+
source_lang,
|
| 14 |
+
target_lang,
|
| 15 |
+
batch_size,
|
| 16 |
+
model_name: str = "facebook/m2m100_1.2B",
|
| 17 |
+
tensorrt: bool = False,
|
| 18 |
+
precision: int = 32,
|
| 19 |
+
max_length: int = 128,
|
| 20 |
+
):
|
| 21 |
+
|
| 22 |
+
if not os.path.exists(os.path.dirname(output_path)):
|
| 23 |
+
os.makedirs(os.path.dirname(output_path))
|
| 24 |
+
|
| 25 |
+
print("Loading tokenizer...")
|
| 26 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
| 27 |
+
print("Loading model...")
|
| 28 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
| 29 |
+
print(f"Model loaded.\n")
|
| 30 |
+
|
| 31 |
+
tokenizer.src_lang = source_lang
|
| 32 |
+
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
|
| 33 |
+
|
| 34 |
+
model.eval()
|
| 35 |
+
|
| 36 |
+
total_lines: int = count_lines(sentences_path)
|
| 37 |
+
print(f"We will translate {total_lines} lines.")
|
| 38 |
+
data_loader = get_dataloader(
|
| 39 |
+
filename=sentences_path,
|
| 40 |
+
tokenizer=tokenizer,
|
| 41 |
+
batch_size=batch_size,
|
| 42 |
+
max_length=128,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
if precision == 16:
|
| 46 |
+
dtype = torch.float16
|
| 47 |
+
elif precision == 32:
|
| 48 |
+
dtype = torch.float32
|
| 49 |
+
elif precision == 64:
|
| 50 |
+
dtype = torch.float64
|
| 51 |
+
else:
|
| 52 |
+
raise ValueError("Precision must be 16, 32 or 64.")
|
| 53 |
+
|
| 54 |
+
if tensorrt:
|
| 55 |
+
import torch_tensorrt
|
| 56 |
+
|
| 57 |
+
traced_model = torch.jit.trace(
|
| 58 |
+
model, [torch.randn((batch_size, max_length)).to("cuda")]
|
| 59 |
+
)
|
| 60 |
+
model = torch_tensorrt.compile(
|
| 61 |
+
traced_model,
|
| 62 |
+
inputs=[torch_tensorrt.Input((batch_size, max_length), dtype=dtype)],
|
| 63 |
+
enabled_precisions={dtype},
|
| 64 |
+
)
|
| 65 |
+
else:
|
| 66 |
+
if torch.cuda.is_available():
|
| 67 |
+
model.to("cuda", dtype=dtype)
|
| 68 |
+
else:
|
| 69 |
+
model.to("cpu", dtype=dtype)
|
| 70 |
+
print("CUDA not available. Using CPU. This will be slow.")
|
| 71 |
+
|
| 72 |
+
with tqdm(total=total_lines, desc="Dataset translation") as pbar, open(
|
| 73 |
+
output_path, "w+", encoding="utf-8"
|
| 74 |
+
) as output_file:
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
for batch in data_loader:
|
| 77 |
+
generated_tokens = model.generate(
|
| 78 |
+
**batch, forced_bos_token_id=lang_code_to_idx
|
| 79 |
+
)
|
| 80 |
+
tgt_text = tokenizer.batch_decode(
|
| 81 |
+
generated_tokens.cpu(), skip_special_tokens=True
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
print("\n".join(tgt_text), file=output_file)
|
| 85 |
+
|
| 86 |
+
pbar.update(len(tgt_text))
|
| 87 |
+
|
| 88 |
+
print(f"Translation done.\n")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
parser = argparse.ArgumentParser(description="Run the translation experiments")
|
| 93 |
+
parser.add_argument(
|
| 94 |
+
"--sentences_path",
|
| 95 |
+
type=str,
|
| 96 |
+
required=True,
|
| 97 |
+
help="Path to a txt file containing the sentences to translate. One sentence per line.",
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
"--output_path",
|
| 102 |
+
type=str,
|
| 103 |
+
required=True,
|
| 104 |
+
help="Path to a txt file where the translated sentences will be written.",
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"--source_lang",
|
| 109 |
+
type=str,
|
| 110 |
+
required=True,
|
| 111 |
+
help="Source language id. See: https://huggingface.co/facebook/m2m100_1.2B",
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
parser.add_argument(
|
| 115 |
+
"--target_lang",
|
| 116 |
+
type=str,
|
| 117 |
+
required=True,
|
| 118 |
+
help="Target language id. See: https://huggingface.co/facebook/m2m100_1.2B",
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
parser.add_argument(
|
| 122 |
+
"--batch_size",
|
| 123 |
+
type=int,
|
| 124 |
+
default=8,
|
| 125 |
+
help="Batch size",
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
parser.add_argument(
|
| 129 |
+
"--model_name",
|
| 130 |
+
type=str,
|
| 131 |
+
default="facebook/m2m100_1.2B",
|
| 132 |
+
help="Path to the model to use. See: https://huggingface.co/models",
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
parser.add_argument(
|
| 136 |
+
"--precision",
|
| 137 |
+
type=int,
|
| 138 |
+
default=32,
|
| 139 |
+
choices=[16, 32, 64],
|
| 140 |
+
help="Precision of the model. 16, 32 or 64.",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--tensorrt",
|
| 145 |
+
action="store_true",
|
| 146 |
+
help="Use TensorRT to compile the model.",
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
args = parser.parse_args()
|
| 150 |
+
|
| 151 |
+
main(
|
| 152 |
+
sentences_path=args.sentences_path,
|
| 153 |
+
output_path=args.output_path,
|
| 154 |
+
source_lang=args.source_lang,
|
| 155 |
+
target_lang=args.target_lang,
|
| 156 |
+
batch_size=args.batch_size,
|
| 157 |
+
model_name=args.model_name,
|
| 158 |
+
precision=args.precision,
|
| 159 |
+
tensorrt=args.tensorrt,
|
| 160 |
+
)
|