File size: 46,670 Bytes
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4ea2d5
568ad78
170baad
3c1bb16
 
 
 
862dde4
3c1bb16
 
d984c3b
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
568ad78
b696195
3c1bb16
 
 
 
 
568ad78
3c1bb16
 
375677d
 
 
3c1bb16
 
 
 
05e4e0d
3c1bb16
 
 
 
05e4e0d
3c1bb16
 
 
 
 
 
05e4e0d
b696195
 
 
b4ea2d5
05e4e0d
 
b696195
05e4e0d
170baad
b4ea2d5
05e4e0d
 
 
b696195
 
b4ea2d5
 
b696195
b4ea2d5
b696195
05e4e0d
b4ea2d5
05e4e0d
3c1bb16
3cf6d34
b696195
3c1bb16
05e4e0d
3c1bb16
 
b4ea2d5
3c1bb16
 
 
 
f404032
d984c3b
3c1bb16
 
 
 
 
 
 
 
 
 
 
d984c3b
3c1bb16
 
 
 
 
 
 
 
375677d
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
98cbcc7
3c1bb16
 
98cbcc7
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d984c3b
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375677d
3c1bb16
375677d
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375677d
3c1bb16
375677d
3c1bb16
 
 
 
 
 
 
 
 
375677d
3c1bb16
375677d
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
375677d
3c1bb16
d984c3b
3c1bb16
 
d984c3b
3c1bb16
 
 
 
 
 
375677d
3c1bb16
862dde4
3c1bb16
 
375677d
 
3c1bb16
d984c3b
375677d
3c1bb16
 
 
862dde4
3c1bb16
 
 
 
375677d
3c1bb16
 
 
 
 
 
 
12a98dc
d984c3b
12a98dc
3c1bb16
 
568ad78
3c1bb16
 
 
 
 
 
d984c3b
3c1bb16
12a98dc
3c1bb16
 
 
 
 
 
 
e30c7bc
949751a
e30c7bc
 
0768a20
3c1bb16
0d9032c
949751a
 
 
 
1d80fac
d984c3b
949751a
3cf6d34
949751a
3cf6d34
949751a
0768a20
e30c7bc
 
 
 
949751a
 
d984c3b
 
 
 
 
568ad78
e30c7bc
0768a20
 
568ad78
0768a20
e30c7bc
949751a
0768a20
12a98dc
 
0768a20
568ad78
b4ea2d5
0768a20
170baad
 
 
862dde4
b696195
12a98dc
862dde4
b696195
12a98dc
 
 
862dde4
05e4e0d
b696195
 
949751a
170baad
949751a
 
568ad78
949751a
 
 
170baad
949751a
 
 
 
e30c7bc
 
170baad
568ad78
170baad
 
568ad78
170baad
949751a
0768a20
949751a
 
 
 
0768a20
 
170baad
0768a20
 
 
 
 
e30c7bc
0768a20
 
 
 
e30c7bc
 
0768a20
e30c7bc
0768a20
 
 
 
 
 
 
e30c7bc
0768a20
 
 
 
 
3c1bb16
 
 
 
 
 
 
 
 
b696195
3c1bb16
b696195
 
3c1bb16
b696195
3c1bb16
 
b696195
12a98dc
b696195
 
 
 
3c1bb16
b696195
 
 
3c1bb16
 
b696195
 
 
 
 
 
 
 
 
 
 
 
 
b4ea2d5
 
 
 
b696195
 
 
 
 
3cf6d34
b696195
3cf6d34
 
 
 
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d984c3b
3c1bb16
 
 
 
 
 
 
 
862dde4
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170baad
3c1bb16
 
 
 
b4ea2d5
3c1bb16
 
 
 
d984c3b
3c1bb16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eea9aff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
# Copyright 2025 Jesus Vilela Jato.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# --- Imports ---
import os
import gradio as gr
import requests
import pandas as pd
import json
import logging
from typing import Optional, List, Dict, Any, Tuple, Union, Type, TYPE_CHECKING, Annotated
import hashlib
from urllib.parse import urlparse
import mimetypes
import subprocess # For yt-dlp
import io # For BytesIO with PIL

# --- Global Variables for Startup Status ---
missing_vars_startup_list_global = []
agent_pre_init_status_msg_global = "Agent status will be determined at startup."

# File Processing Libs
try: from PyPDF2 import PdfReader; PYPDF2_AVAILABLE = True
except ImportError: PYPDF2_AVAILABLE = False; print("WARNING: PyPDF2 not found, PDF tool will be disabled.")
try: from PIL import Image; import pytesseract; PIL_TESSERACT_AVAILABLE = True
except ImportError: PIL_TESSERACT_AVAILABLE = False; print("WARNING: Pillow or Pytesseract not found, OCR tool will be disabled.")
try: import whisper; WHISPER_AVAILABLE = True
except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")

# Google GenAI SDK types
from google.genai.types import HarmCategory, HarmBlockThreshold
from google.ai import generativelanguage as glm # For FileState enum

# LangChain
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
from langchain.prompts import PromptTemplate
from langchain.tools import BaseTool, tool as lc_tool_decorator
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents import AgentExecutor, create_react_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool

# LangGraph Conditional Imports
if TYPE_CHECKING:
    from langgraph.graph import StateGraph as StateGraphAliasedForHinting
    from langgraph.prebuilt import ToolNode as ToolExecutorAliasedForHinting
    from typing_extensions import TypedDict
    from langgraph.checkpoint.base import BaseCheckpointSaver

LANGGRAPH_FLAVOR_AVAILABLE = False
LG_StateGraph: Optional[Type[Any]] = None
LG_ToolExecutor_Class: Optional[Type[Any]] = None
LG_END: Optional[Any] = None
LG_ToolInvocation: Optional[Type[Any]] = None
add_messages: Optional[Any] = None
MemorySaver_Class: Optional[Type[Any]] = None

AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
TOOLS: List[BaseTool] = []
LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
LANGGRAPH_MEMORY_SAVER: Optional[Any] = None

# google-genai Client SDK
from google import genai as google_genai_sdk
google_genai_client: Optional[google_genai_sdk.Client] = None

try:
    from langgraph.graph import StateGraph, END
    try:
        from langgraph.prebuilt import ToolNode
        LG_ToolExecutor_Class = ToolNode
        print("Using langgraph.prebuilt.ToolNode for LangGraph tool execution.")
    except ImportError:
        try:
            from langgraph.prebuilt import ToolExecutor
            LG_ToolExecutor_Class = ToolExecutor
            print("Using langgraph.prebuilt.ToolExecutor (fallback) for LangGraph tool execution.")
        except ImportError as e_lg_exec_inner:
             print(f"Failed to import ToolNode and ToolExecutor from langgraph.prebuilt: {e_lg_exec_inner}")
             LG_ToolExecutor_Class = None

    if LG_ToolExecutor_Class is not None:
        try:
            from langgraph.prebuilt import ToolInvocation as LGToolInvocationActual
        except ImportError:
            try:
                from langgraph.tools import ToolInvocation as LGToolInvocationActual
                print("Imported ToolInvocation from langgraph.tools")
            except ImportError as e_ti:
                print(f"WARNING: Could not import ToolInvocation from langgraph.prebuilt or langgraph.tools: {e_ti}")
                LGToolInvocationActual = None # type: ignore
        
        if LGToolInvocationActual is not None or type(LG_ToolExecutor_Class).__name__ == 'ToolNode':
            from langgraph.graph.message import add_messages as lg_add_messages
            from langgraph.checkpoint.memory import MemorySaver as LGMemorySaver
            LANGGRAPH_FLAVOR_AVAILABLE = True
            LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = \
                StateGraph, END, LGToolInvocationActual, lg_add_messages, LGMemorySaver # type: ignore
            print("Successfully imported essential LangGraph components.")
        else:
            LANGGRAPH_FLAVOR_AVAILABLE = False
            LG_StateGraph, LG_END, add_messages, MemorySaver_Class = (None,) * 4 # type: ignore
            print(f"WARNING: LangGraph ToolInvocation not found and may be required by older ToolExecutor. LangGraph agent functionality might be limited or disabled.")
            
    else:
        LANGGRAPH_FLAVOR_AVAILABLE = False
        LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 5 # type: ignore
        print(f"WARNING: No suitable LangGraph tool executor (ToolNode/ToolExecutor) found. LangGraph agent will be disabled.")

except ImportError as e:
    LANGGRAPH_FLAVOR_AVAILABLE = False
    LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 6
    print(f"WARNING: Core LangGraph components (like StateGraph, END) not found or import error: {e}. LangGraph agent will be disabled.")


# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
GEMINI_MODEL_NAME = "gemini-2.5-pro"
GEMINI_FLASH_MULTIMODAL_MODEL_NAME = "gemini-1.5-flash-latest"
SCORING_API_BASE_URL = os.getenv("SCORING_API_URL", DEFAULT_API_URL)
MAX_FILE_SIZE_BYTES = 50 * 1024 * 1024
LOCAL_FILE_STORE_PATH = "./Data"
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)

# --- Global State ---
WHISPER_MODEL: Optional[Any] = None

# --- Environment Variables & API Keys ---
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
HUGGINGFACE_TOKEN = os.environ.get("HF_TOKEN")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")

# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(name)s - %(module)s:%(lineno)d - %(message)s')
logger = logging.getLogger(__name__)

# --- Initialize google-genai Client SDK ---
if GOOGLE_API_KEY:
    try:
        google_genai_client = google_genai_sdk.Client(api_key=GOOGLE_API_KEY)
        logger.info("google-genai SDK Client initialized successfully.")
    except Exception as e:
        logger.error(f"Failed to initialize google-genai SDK Client: {e}")
        google_genai_client = None
else:
    logger.warning("GOOGLE_API_KEY not found. google-genai SDK Client not initialized.")

# --- Helper Functions (Unchanged) ---
def _strip_exact_match_answer(text: Any) -> str:
    if not isinstance(text, str): text = str(text)
    text_lower_check = text.lower()
    if text_lower_check.startswith("final answer:"):
        text = text[len("final answer:"):].strip()
    text = text.strip()
    if text.startswith("```") and text.endswith("```"):
        if "\n" in text:
            text_content = text.split("\n", 1)[1] if len(text.split("\n", 1)) > 1 else ""
            text = text_content.strip()[:-3].strip() if text_content.strip().endswith("```") else text[3:-3].strip()
        else: text = text[3:-3].strip()
    elif text.startswith("`") and text.endswith("`"): text = text[1:-1].strip()
    if (text.startswith('"') and text.endswith('"')) or \
       (text.startswith("'") and text.endswith("'")):
        if len(text) > 1: text = text[1:-1]
    return text.strip()

def _is_full_url(url_string: str) -> bool:
    try: result = urlparse(url_string); return all([result.scheme, result.netloc])
    except ValueError: return False

def _is_youtube_url(url: str) -> bool:
    parsed_url = urlparse(url)
    return parsed_url.netloc.lower().endswith(("youtube.com", "youtu.be"))

def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None) -> str:
    os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
    logger.debug(f"Download request: '{file_identifier}', task_id: {task_id_for_file}")
    original_filename = os.path.basename(urlparse(file_identifier).path) if _is_full_url(file_identifier) else os.path.basename(file_identifier)
    if not original_filename or original_filename == '/':
        original_filename = hashlib.md5(file_identifier.encode()).hexdigest()[:12] + ".download"
    prefix = f"{task_id_for_file}_" if task_id_for_file else ""
    sanitized_original_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in original_filename)
    tentative_local_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_original_filename}")

    if _is_full_url(file_identifier) and _is_youtube_url(file_identifier):
        logger.info(f"YouTube URL: {file_identifier}. Using yt-dlp.")
        yt_file_hash = hashlib.md5(file_identifier.encode()).hexdigest()[:10]
        yt_filename_base = f"youtube_{prefix}{yt_file_hash}"
        target_mp3_path = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + ".mp3")
        if os.path.exists(target_mp3_path) and os.path.getsize(target_mp3_path) > 0:
            logger.info(f"Cached YouTube MP3: {target_mp3_path}"); return target_mp3_path
        temp_output_template = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + "_temp.%(ext)s")
        try:
            command = ['yt-dlp', '--quiet', '--no-warnings', '-x', '--audio-format', 'mp3',
                       '--audio-quality', '0', '--max-filesize', str(MAX_FILE_SIZE_BYTES),
                       '-o', temp_output_template, file_identifier]
            logger.info(f"yt-dlp command: {' '.join(command)}")
            process = subprocess.run(command, capture_output=True, text=True, timeout=180, check=False)
            downloaded_temp_file = next((os.path.join(LOCAL_FILE_STORE_PATH, f) for f in os.listdir(LOCAL_FILE_STORE_PATH)
                                         if f.startswith(yt_filename_base + "_temp") and f.endswith(".mp3")), None)
            if process.returncode == 0 and downloaded_temp_file and os.path.exists(downloaded_temp_file):
                os.rename(downloaded_temp_file, target_mp3_path)
                logger.info(f"yt-dlp success: {target_mp3_path}"); return target_mp3_path
            else:
                err_msg = process.stderr.strip() if process.stderr else "Unknown yt-dlp error"
                logger.error(f"yt-dlp failed. RC:{process.returncode}. File:{downloaded_temp_file}. Err:{err_msg[:500]}")
                if downloaded_temp_file and os.path.exists(downloaded_temp_file): os.remove(downloaded_temp_file)
                return f"Error: yt-dlp failed. Msg:{err_msg[:200]}"
        except Exception as e: logger.error(f"yt-dlp exception: {e}", exc_info=True); return f"Error: yt-dlp exception: {str(e)[:200]}"

    file_url_to_try = file_identifier if _is_full_url(file_identifier) else None
    if not file_url_to_try and task_id_for_file:
        file_url_to_try = f"{SCORING_API_BASE_URL.rstrip('/')}/files/{task_id_for_file}"
    elif not file_url_to_try:
        if os.path.exists(file_identifier): logger.info(f"Using local file: {file_identifier}"); return file_identifier
        return f"Error: Not URL, not local, no task_id for '{file_identifier}'."

    if os.path.exists(tentative_local_path) and os.path.getsize(tentative_local_path) > 0:
        logger.info(f"Cached file (pre-CD): {tentative_local_path}"); return tentative_local_path
    effective_save_path = tentative_local_path
    try:
        auth_headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN and \
                       any(s in file_url_to_try for s in [SCORING_API_BASE_URL, ".hf.space", "huggingface.co"]) else {}
        logger.info(f"Standard download: {file_url_to_try} (Headers: {list(auth_headers.keys())})")
        with requests.get(file_url_to_try, stream=True, headers=auth_headers, timeout=60) as r:
            r.raise_for_status()
            cd_header = r.headers.get('content-disposition')
            filename_from_cd = None
            if cd_header:
                try:
                    decoded_cd_header = cd_header.encode('latin-1', 'replace').decode('utf-8', 'replace')
                    _, params = requests.utils.parse_header_links(decoded_cd_header) # type: ignore
                    for key, val in params.items():
                        if key.lower() == 'filename*' and val.lower().startswith("utf-8''"):
                            filename_from_cd = requests.utils.unquote(val[len("utf-8''"):]); break
                        elif key.lower() == 'filename':
                            filename_from_cd = requests.utils.unquote(val)
                            if filename_from_cd.startswith('"') and filename_from_cd.endswith('"'): filename_from_cd = filename_from_cd[1:-1]
                            break
                except Exception as e_cd: logger.warning(f"CD parse error '{cd_header}': {e_cd}")
            if filename_from_cd:
                sanitized_cd_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in filename_from_cd)
                effective_save_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_cd_filename}")
                logger.info(f"Using CD filename: '{sanitized_cd_filename}'. Path: {effective_save_path}")

            name_without_ext, current_ext = os.path.splitext(effective_save_path)
            if not current_ext:
                content_type_header = r.headers.get('content-type', '')
                content_type_val = content_type_header.split(';').strip() if content_type_header else ''
                if content_type_val:
                    guessed_ext = mimetypes.guess_extension(content_type_val)
                    if guessed_ext: effective_save_path += guessed_ext; logger.info(f"Added guessed ext: {guessed_ext}")

            if effective_save_path != tentative_local_path and os.path.exists(effective_save_path) and os.path.getsize(effective_save_path) > 0:
                logger.info(f"Cached file (CD name): {effective_save_path}"); return effective_save_path
            with open(effective_save_path, "wb") as f_download:
                for chunk in r.iter_content(chunk_size=1024*1024): f_download.write(chunk)
            logger.info(f"File downloaded to {effective_save_path}"); return effective_save_path
    except requests.exceptions.HTTPError as e:
        err_msg = f"HTTP {e.response.status_code} for {file_url_to_try}. Detail: {e.response.text[:100]}"
        logger.error(err_msg, exc_info=False); return f"Error downloading: {err_msg}"
    except Exception as e:
        logger.error(f"Download error for {file_url_to_try}: {e}", exc_info=True); return f"Error: {str(e)[:100]}"

# --- Tool Function Definitions ---
@lc_tool_decorator
def read_pdf_tool(action_input_json_str: str) -> str:
    """Reads text content from a PDF file. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."""
    if not PYPDF2_AVAILABLE: return "Error: PyPDF2 not installed."
    try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
    except Exception as e: return f"Error parsing JSON for read_pdf_tool: {e}. Input: {action_input_json_str}"
    if not file_id: return "Error: 'file_identifier' missing."
    path = _download_file(file_id, task_id)
    if path.startswith("Error:"): return path
    try:
        text_content = "";
        with open(path, "rb") as f_pdf:
            reader = PdfReader(f_pdf)
            if reader.is_encrypted:
                try: reader.decrypt('')
                except: return f"Error: PDF '{path}' encrypted."
            for page_num in range(len(reader.pages)):
                page = reader.pages[page_num]
                text_content += page.extract_text() + "\n\n"
        return text_content[:40000]
    except Exception as e: return f"Error reading PDF '{path}': {e}"

@lc_tool_decorator
def ocr_image_tool(action_input_json_str: str) -> str:
    """Extracts text from an image using OCR. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."""
    if not PIL_TESSERACT_AVAILABLE: return "Error: Pillow/Pytesseract not installed."
    try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
    except Exception as e: return f"Error parsing JSON for ocr_image_tool: {e}. Input: {action_input_json_str}"
    if not file_id: return "Error: 'file_identifier' missing."
    path = _download_file(file_id, task_id)
    if path.startswith("Error:"): return path
    try: return pytesseract.image_to_string(Image.open(path))[:40000]
    except Exception as e: return f"Error OCR'ing '{path}': {e}"

@lc_tool_decorator
def transcribe_audio_tool(action_input_json_str: str) -> str:
    """Transcribes speech from an audio file (or YouTube URL) to text. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL_OR_YOUTUBE_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns transcript."""
    global WHISPER_MODEL
    if not WHISPER_AVAILABLE: return "Error: Whisper not installed."
    try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
    except Exception as e: return f"Error parsing JSON for transcribe_audio_tool: {e}. Input: {action_input_json_str}"
    if not file_id: return "Error: 'file_identifier' missing."
    if WHISPER_MODEL is None:
        try: WHISPER_MODEL = whisper.load_model("base"); logger.info("Whisper 'base' model loaded.")
        except Exception as e: logger.error(f"Whisper load failed: {e}"); return f"Error: Whisper load: {e}"
    path = _download_file(file_id, task_id)
    if path.startswith("Error:"): return path
    try: result = WHISPER_MODEL.transcribe(path, fp16=False); return result["text"][:40000] # type: ignore
    except Exception as e: logger.error(f"Whisper error on '{path}': {e}", exc_info=True); return f"Error transcribing '{path}': {e}"

@lc_tool_decorator
def direct_multimodal_gemini_tool(action_input_json_str: str) -> str:
    """Processes an image file (URL or local path) along with a text prompt using a Gemini multimodal model (gemini-1.5-flash-latest) for tasks like image description, Q&A about the image, or text generation based on the image. Input: JSON '{\"file_identifier\": \"IMAGE_FILENAME_OR_URL\", \"text_prompt\": \"Your question or instruction related to the image.\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\" (optional)}'. Returns the model's text response."""
    global google_genai_client
    if not google_genai_client: return "Error: google-genai SDK client not initialized."
    if not PIL_TESSERACT_AVAILABLE : return "Error: Pillow (PIL) library not available for image processing."
    try:
        data = json.loads(action_input_json_str)
        file_identifier = data.get("file_identifier")
        text_prompt = data.get("text_prompt", "Describe this image.")
        task_id = data.get("task_id")
        if not file_identifier: return "Error: 'file_identifier' for image missing."
        logger.info(f"Direct Multimodal Tool: Processing image '{file_identifier}' with prompt '{text_prompt}'")
        local_image_path = _download_file(file_identifier, task_id)
        if local_image_path.startswith("Error:"): return f"Error downloading image for Direct MM Tool: {local_image_path}"
        try:
            pil_image = Image.open(local_image_path)
        except Exception as e_img_open: return f"Error opening image file {local_image_path}: {str(e_img_open)}"
        
        model_id_for_client = f"models/{GEMINI_FLASH_MULTIMODAL_MODEL_NAME}" if not GEMINI_FLASH_MULTIMODAL_MODEL_NAME.startswith("models/") else GEMINI_FLASH_MULTIMODAL_MODEL_NAME
        response = google_genai_client.models.generate_content(
            model=model_id_for_client, contents=[pil_image, text_prompt]
        )
        logger.info(f"Direct Multimodal Tool: Response received from {model_id_for_client} received.")
        return response.text[:40000]
    except json.JSONDecodeError as e_json_mm: return f"Error parsing JSON input for Direct MM Tool: {str(e_json_mm)}. Input: {action_input_json_str}"
    except Exception as e_tool_mm:
        logger.error(f"Error in direct_multimodal_gemini_tool: {e_tool_mm}", exc_info=True)
        return f"Error executing Direct Multimodal Tool: {str(e_tool_mm)}"

# --- Agent Prompts ---
LANGGRAPH_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
Your goal is to provide an EXACT MATCH final answer. No conversational text, explanations, or markdown unless explicitly part of the answer.
TOOLS:
You have access to the following tools. Use them if necessary.
{tools}
TOOL USAGE:
- To use a tool, your response must include a `tool_calls` attribute in the AIMessage. Each tool call should be a dictionary with "name", "args" (a dictionary of arguments), and "id".
- For file tools ('read_pdf_tool', 'ocr_image_tool', 'transcribe_audio_tool', 'direct_multimodal_gemini_tool'): The `args` field must be a dictionary with a single key 'action_input_json_str' whose value is a JSON STRING. Example: {{"action_input_json_str": "{{\\"file_identifier\\": \\"file.pdf\\", \\"task_id\\": \\"123\\"}}"}}.
- 'tavily_search_results_json': `args` is like '{{"query": "search query"}}'.
- 'python_repl': `args` is like '{{"query": "python code string"}}'. Use print() for output.
RESPONSE FORMAT:
Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
Begin!"""

REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
Goal: EXACT MATCH answer. No extra text/markdown.
Tools: {tools}
Process: Question -> Thought -> Action (ONE of [{tool_names}]) -> Action Input -> Observation -> Thought ... -> Final Answer: [exact answer]
Tool Inputs:
- tavily_search_results_json: Your search query string.
- python_repl: Python code string. Use print(). For Excel/CSV, use pandas: import pandas as pd; df = pd.read_excel('./Data/TASKID_filename.xlsx'); print(df.head())
- read_pdf_tool, ocr_image_tool, transcribe_audio_tool, direct_multimodal_gemini_tool: JSON string like '{{"file_identifier": "FILENAME_OR_URL", "task_id": "CURRENT_TASK_ID_IF_FILENAME"}}'.
If tool fails or info missing, Final Answer: N/A. Do NOT use unlisted tools.
Begin!
{input}
Thought:{agent_scratchpad}"""


# --- Agent Initialization and Response Logic ---
def initialize_agent_and_tools(force_reinit=False):
    global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class, LANGGRAPH_MEMORY_SAVER, google_genai_client
    if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
    logger.info("Initializing agent and tools...")
    if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
    
    try:
        LLM_INSTANCE = ChatGoogleGenerativeAI(
            model=GEMINI_MODEL_NAME,
            google_api_key=GOOGLE_API_KEY,
            temperature=0.0,
            timeout=120,
            convert_system_message_to_human=False
        )
        logger.info(f"LangChain LLM (Planner) initialized: {GEMINI_MODEL_NAME} (Using default safety settings, convert_system_message_to_human=False)")
    except Exception as e:
        logger.error(f"LangChain LLM init FAILED: {e}", exc_info=True)
        raise

    TOOLS = []
    if PYPDF2_AVAILABLE: TOOLS.append(read_pdf_tool)
    if PIL_TESSERACT_AVAILABLE: TOOLS.append(ocr_image_tool)
    if WHISPER_AVAILABLE: TOOLS.append(transcribe_audio_tool)
    if google_genai_client and PIL_TESSERACT_AVAILABLE: TOOLS.append(direct_multimodal_gemini_tool); logger.info("Added 'direct_multimodal_gemini_tool'.")
    else: logger.warning("'direct_multimodal_gemini_tool' NOT added (client or PIL missing).")
    try:
        search_tool = TavilySearchResults(max_results=3)
        TOOLS.append(search_tool)
        logger.info("Added 'TavilySearchResults' tool.")
    except Exception as e: logger.warning(f"TavilySearchResults init failed: {e}")
    try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output. The input is a single string of code."; TOOLS.append(python_repl)
    except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
    logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")

    if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor_Class, LG_END, LLM_INSTANCE, add_messages]):
        if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
        try:
            logger.info(f"Attempting LangGraph init (Tool Executor type: {LG_ToolExecutor_Class.__name__ if LG_ToolExecutor_Class else 'None'})")
            _TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
            class AgentState(_TypedDict):
                messages: Annotated[List[Any], add_messages]

            base_system_prompt_content_lg = LANGGRAPH_PROMPT_TEMPLATE_STR

            def agent_node(state: AgentState):
                system_message_content = base_system_prompt_content_lg.format(
                    tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS])
                )
                
                messages_for_llm = [SystemMessage(content=system_message_content)]
                messages_for_llm.extend(state['messages'])
                
                logger.debug(f"LangGraph agent_node - messages_for_llm: {messages_for_llm}")
                if not messages_for_llm or not any(isinstance(m, (HumanMessage, ToolMessage)) for m in messages_for_llm):
                    logger.error("LLM call would fail in agent_node: No HumanMessage or ToolMessage found in history.")
                    return {"messages": [AIMessage(content="[ERROR] Agent node: No user input found in messages.")]}

                bound_llm = LLM_INSTANCE.bind_tools(TOOLS)
                response = bound_llm.invoke(messages_for_llm)
                return {"messages": [response]}

            if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
            tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)

            def tool_node(state: AgentState):
                last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
                if not last_msg or not last_msg.tool_calls: return {"messages": []}
                tool_results = []
                for tc in last_msg.tool_calls:
                    name, args, tc_id = tc.get('name'), tc.get('args'), tc.get('id')
                    if not all([name, isinstance(args, dict), tc_id]):
                        err_msg=f"Invalid tool_call: {tc}"; logger.error(err_msg)
                        tool_results.append(ToolMessage(f"Error: {err_msg}", tool_call_id=tc_id or "error_id", name=name or "error_tool"))
                        continue
                    try:
                        logger.info(f"LG Tool Invoking: '{name}' with {args} (ID: {tc_id})")
                        if LG_ToolInvocation and type(LG_ToolExecutor_Class).__name__ != 'ToolNode':
                            invocation = LG_ToolInvocation(tool=name, tool_input=args)
                            output_lg = tool_executor_instance_lg.invoke(invocation) # type: ignore
                        else:
                            output_lg = tool_executor_instance_lg.invoke(tc) # type: ignore
                        tool_results.append(ToolMessage(content=str(output_lg), tool_call_id=tc_id, name=name))
                    except Exception as e_tool_node_lg:
                        logger.error(f"LG Tool Error ('{name}'): {e_tool_node_lg}", exc_info=True)
                        tool_results.append(ToolMessage(content=f"Error for tool {name}: {str(e_tool_node_lg)}", tool_call_id=tc_id, name=name))
                return {"messages": tool_results}

            workflow_lg = LG_StateGraph(AgentState) # type: ignore
            workflow_lg.add_node("agent", agent_node)
            workflow_lg.add_node("tools", tool_node)
            workflow_lg.set_entry_point("agent")
            def should_continue_lg(state: AgentState): return "tools" if state['messages'][-1].tool_calls else LG_END
            workflow_lg.add_conditional_edges("agent", should_continue_lg, {"tools": "tools", LG_END: LG_END}) # type: ignore
            workflow_lg.add_edge("tools", "agent")
            AGENT_INSTANCE = workflow_lg.compile(checkpointer=LANGGRAPH_MEMORY_SAVER) if LANGGRAPH_MEMORY_SAVER else workflow_lg.compile()
            logger.info(f"LangGraph compiled (Memory: {LANGGRAPH_MEMORY_SAVER is not None}).")
        except Exception as e_lg_init_main:
            logger.error(f"LangGraph init error: {e_lg_init_main}. Fallback ReAct.", exc_info=True); AGENT_INSTANCE = None
    else:
        logger.info("Skipping LangGraph: core components missing or LLM not ready."); AGENT_INSTANCE = None

    if not AGENT_INSTANCE:
        logger.info("Initializing ReAct agent as fallback.")
        try:
            if not LLM_INSTANCE: raise ValueError("LLM_INSTANCE is None for ReAct.")
            prompt_react_instance = PromptTemplate.from_template(REACT_PROMPT_TEMPLATE_STR).partial(
                tools="\n".join([f"- {t.name}:{t.description}" for t in TOOLS]),
                tool_names=",".join([t.name for t in TOOLS])
            )
            react_agent_runnable_instance = create_react_agent(LLM_INSTANCE, TOOLS, prompt_react_instance)
            AGENT_INSTANCE = AgentExecutor(agent=react_agent_runnable_instance, tools=TOOLS, verbose=True, handle_parsing_errors=True, max_iterations=15, early_stopping_method="force")
            logger.info("ReAct agent initialized.")
        except Exception as e_react_init_main:
            logger.error(f"ReAct agent init failed: {e_react_init_main}", exc_info=True); AGENT_INSTANCE = None

    if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
    logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")

def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
    global AGENT_INSTANCE, LLM_INSTANCE
    thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
    if not AGENT_INSTANCE or not LLM_INSTANCE:
        logger.warning("Agent/LLM not initialized in get_agent_response. Attempting re-initialization.")
        try: initialize_agent_and_tools(force_reinit=True)
        except Exception as e_reinit_get: logger.error(f"Re-initialization failed: {e_reinit_get}"); return f"[ERROR] Agent/LLM re-init failed: {str(e_reinit_get)}"
        if not AGENT_INSTANCE or not LLM_INSTANCE: return "[ERROR] Agent/LLM still None after re-init."
    
    agent_name_get = type(AGENT_INSTANCE).__name__
    logger.info(f"Agent ({agent_name_get}) processing. Task: {task_id or 'N/A'}. Thread: {thread_id_to_use}. Prompt: {prompt[:100]}...")
    
    is_langgraph_agent_get = LANGGRAPH_FLAVOR_AVAILABLE and AGENT_INSTANCE and hasattr(AGENT_INSTANCE, 'graph') and hasattr(AGENT_INSTANCE, 'config_schema')
    
    try:
        if is_langgraph_agent_get:
            logger.debug(f"Using LangGraph agent for thread: {thread_id_to_use}")
            input_for_lg_get = {"messages": [HumanMessage(content=prompt)]}
            logger.debug(f"Invoking LangGraph with input: {input_for_lg_get}")
            final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}}) 
            
            logger.debug(f"LangGraph final_state_lg_get: {final_state_lg_get}")
            if not final_state_lg_get or 'messages' not in final_state_lg_get or not final_state_lg_get['messages']:
                logger.error("LangGraph: No final state or messages found in the output.")
                return "[ERROR] LangGraph: No final state or messages."
            
            for message_item_lg_get in reversed(final_state_lg_get['messages']):
                if isinstance(message_item_lg_get, AIMessage) and not message_item_lg_get.tool_calls:
                    if isinstance(message_item_lg_get.content, str):
                        return message_item_lg_get.content
                    elif isinstance(message_item_lg_get.content, list) and message_item_lg_get.content:
                        final_text_parts = [part.get("text", "") if isinstance(part, dict) and part.get("type")=="text" else (str(part) if isinstance(part, str) else "") for part in message_item_lg_get.content]
                        return " ".join(filter(None, final_text_parts))
                    else:
                        logger.warning(f"LangGraph: Final AIMessage content not string or parsable list: {type(message_item_lg_get.content)}")
                        return f"[WARN] AIMessage content type not string: {str(message_item_lg_get.content)[:100]}"
            
            logger.warning("LangGraph: No AIMessage without tool_calls found as final answer. Examining last message.")
            last_message_in_history = final_state_lg_get['messages'][-1]
            if hasattr(last_message_in_history, 'content') and isinstance(last_message_in_history.content, str):
                return f"[INFO] Fallback to last message content: {str(last_message_in_history.content)}"
            elif hasattr(last_message_in_history, 'content') and isinstance(last_message_in_history.content, list):
                 return f"[INFO] Fallback to last message (list content): {str(last_message_in_history.content)[:150]}"
            elif isinstance(last_message_in_history, ToolMessage):
                 return f"[INFO] Fallback to ToolMessage content: {str(last_message_in_history.content)[:150]}"
            else:
                logger.error(f"LangGraph: Could not extract string content from the very last message: {last_message_in_history}")
                return "[ERROR] LangGraph: Could not extract final answer from messages."

        elif isinstance(AGENT_INSTANCE, AgentExecutor): 
            logger.debug("Using ReAct agent for get_agent_response.")
            react_input = {"input": prompt} 
            logger.debug(f"ReAct input: {react_input}")
            response_react_get = AGENT_INSTANCE.invoke(react_input)
            logger.debug(f"ReAct response: {response_react_get}")
            return str(response_react_get.get("output", "[ERROR] ReAct: No 'output' key in response."))
        else:
            logger.error(f"Unknown agent type: {agent_name_get}"); return f"[ERROR] Unknown agent type: {agent_name_get}"
    except Exception as e_agent_run_get:
        logger.error(f"Error during agent execution ({agent_name_get}): {e_agent_run_get}", exc_info=True)
        return f"[ERROR] Agent execution failed: {str(e_agent_run_get)[:150]}"

def construct_prompt_for_agent(q: Dict[str,Any]) -> str:
    tid,q_str=q.get("task_id","N/A"),q.get("question",""); files=q.get("files",[])
    files_info = ("\nFiles:\n"+"\n".join([f"- {f} (task_id:{tid})"for f in files])) if files else ""
    level = f"\nLevel:{q.get('level')}" if q.get('level') else ""
    return f"Task ID:{tid}{level}{files_info}\n\nQuestion:{q_str}"

def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
    global AGENT_INSTANCE
    space_id = os.getenv("SPACE_ID")
    username_for_submission = None
    if profile and hasattr(profile, 'username') and profile.username:
        username_for_submission = profile.username
        logger.info(f"Username from OAuth profile: {username_for_submission}")
    else:
        logger.warning("OAuth profile not available or username missing.")
        return "Hugging Face login required. Please use the login button and try again.", None
    if AGENT_INSTANCE is None:
        try: logger.info("Agent not pre-initialized. Initializing for run..."); initialize_agent_and_tools()
        except Exception as e: return f"Agent on-demand initialization failed: {e}", None
        if AGENT_INSTANCE is None: return "Agent is still None after on-demand init.", None
    agent_code_url_run=f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_dev_run"
    questions_url_run,submit_url_run=f"{DEFAULT_API_URL}/questions",f"{DEFAULT_API_URL}/submit"
    auth_headers_run={"Authorization":f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN else {}
    try:
        logger.info(f"Fetching questions from {questions_url_run}")
        response_q_run=requests.get(questions_url_run,headers=auth_headers_run,timeout=30);response_q_run.raise_for_status();questions_data_run=response_q_run.json()
        if not questions_data_run or not isinstance(questions_data_run,list):logger.error(f"Invalid questions data: {questions_data_run}");return "Fetched questions_data invalid.",None
        logger.info(f"Fetched {len(questions_data_run)} questions.")
    except Exception as e:logger.error(f"Fetch questions error: {e}",exc_info=True);return f"Fetch questions error:{e}",None
    results_log_run,answers_payload_run=[],[]
    logger.info(f"Running agent on {len(questions_data_run)} questions for user '{username_for_submission}'...")
    for i,item_run in enumerate(questions_data_run):
        task_id_run,question_text_run=item_run.get("task_id"),item_run.get("question")
        if not task_id_run or question_text_run is None:logger.warning(f"Skipping item: {item_run}");continue
        prompt_run=construct_prompt_for_agent(item_run);thread_id_run=f"gaia_batch_task_{task_id_run}"
        logger.info(f"Processing Q {i+1}/{len(questions_data_run)} - Task: {task_id_run}")
        try:
            raw_answer_run=get_agent_response(prompt_run,task_id=task_id_run,thread_id=thread_id_run);submitted_answer_run=_strip_exact_match_answer(raw_answer_run)
            answers_payload_run.append({"task_id":task_id_run,"submitted_answer":submitted_answer_run})
            results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":raw_answer_run,"Submitted Answer":submitted_answer_run})
        except Exception as e:
            logger.error(f"Agent error task {task_id_run}:{e}",exc_info=True);error_answer_run=f"AGENT ERROR:{str(e)[:100]}"
            answers_payload_run.append({"task_id":task_id_run,"submitted_answer":"N/A [AGENT_ERROR]"})
            results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":error_answer_run,"Submitted Answer":"N/A [AGENT_ERROR]"})
    if not answers_payload_run:return "Agent produced no answers.",pd.DataFrame(results_log_run)
    submission_payload_run={"username":username_for_submission.strip(),"agent_code":agent_code_url_run,"answers":answers_payload_run}
    logger.info(f"Submitting {len(answers_payload_run)} answers to {submit_url_run} for user '{username_for_submission}'...")
    submission_headers_run={"Content-Type":"application/json",**auth_headers_run}
    try:
        response_s_run=requests.post(submit_url_run,json=submission_payload_run,headers=submission_headers_run,timeout=120);response_s_run.raise_for_status();submission_result_run=response_s_run.json()
        result_message_run=(f"User:{submission_result_run.get('username',username_for_submission)}\nScore:{submission_result_run.get('score','N/A')}% ({submission_result_run.get('correct_count','?')}/{submission_result_run.get('total_attempted','?')})\nMsg:{submission_result_run.get('message','N/A')}")
        logger.info(f"Submission OK! {result_message_run}");return f"Submission OK!\n{result_message_run}",pd.DataFrame(results_log_run,columns=["Task ID","Question","Full Agent Prompt","Raw Agent Output","Submitted Answer"])
    except requests.exceptions.HTTPError as e:
        error_http_run=f"HTTP {e.response.status_code}. Detail:{e.response.text[:200]}"; logger.error(f"Submit Fail:{error_http_run}",exc_info=True); return f"Submit Fail:{error_http_run}",pd.DataFrame(results_log_run)
    except Exception as e:logger.error(f"Submit Fail unexpected:{e}",exc_info=True);return f"Submit Fail:{str(e)[:100]}",pd.DataFrame(results_log_run)

# --- Build Gradio Interface ---
with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !important;}",theme=gr.themes.Soft()) as demo:
    gr.Markdown("# GAIA Agent Challenge Runner v7 (OAuth for Username)")
    gr.Markdown(f"""**Instructions:**
1. **Login with Hugging Face** using the button below. Your HF username will be used for submission.
2. Click 'Run Evaluation & Submit' to process GAIA questions (typically 20).
3. **Goal: 30%+ (6/20).** Agent uses Gemini Pro ({GEMINI_MODEL_NAME}) as planner. Tools include Web Search, Python, PDF, OCR, Audio/YouTube, and a new Direct Multimodal tool using Gemini Flash ({GEMINI_FLASH_MULTIMODAL_MODEL_NAME}).
4. Ensure `GOOGLE_API_KEY`, `HUGGINGFACE_TOKEN`, and `TAVILY_API_KEY` are Space secrets.
5. Check Space logs for details. LangGraph is attempted (ReAct fallback).""")

    agent_status_display = gr.Markdown("**Agent Status:** Initializing...")
    missing_secrets_display = gr.Markdown("")

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=7, interactive=False)
    results_table = gr.DataFrame(label="Q&A Log", headers=["Task ID","Question","Prompt","Raw","Submitted"], wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output,results_table], api_name="run_evaluation")

    def update_ui_on_load_fn_within_context():
        global missing_vars_startup_list_global, agent_pre_init_status_msg_global
        secrets_msg_md = ""
        if missing_vars_startup_list_global:
            secrets_msg_md = f"<font color='red'>**⚠️ Secrets Missing:** {', '.join(missing_vars_startup_list_global)}.</font>"
        env_issues = []
        try: subprocess.run(['yt-dlp','--version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
        except: env_issues.append("yt-dlp"); logger.warning("yt-dlp check failed (UI load).")
        try: subprocess.run(['ffmpeg','-version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
        except: env_issues.append("ffmpeg"); logger.warning("ffmpeg check failed (UI load).")
        if env_issues: secrets_msg_md += f"<br/><font color='orange'>**Tool Deps Missing:** {', '.join(env_issues)}.</font>"
        current_status_md = agent_pre_init_status_msg_global
        if not LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
             current_status_md += f" (LangGraph core components not fully loaded: LG_ToolExecutor_Class is {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'None'}, ReAct fallback.)"
        elif LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
             current_status_md += f" (LangGraph ready with {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'UnknownExecutor'}.)"
        return { agent_status_display: gr.Markdown(value=current_status_md),
                 missing_secrets_display: gr.Markdown(value=secrets_msg_md) }

    demo.load(update_ui_on_load_fn_within_context, [], [agent_status_display, missing_secrets_display])

if __name__ == "__main__":
    logger.info(f"Application starting up (v7.2 - Agent Node Message & LLM Safety Fix)...")
    if not PYPDF2_AVAILABLE: logger.warning("PyPDF2 (PDF tool) NOT AVAILABLE.")
    if not PIL_TESSERACT_AVAILABLE: logger.warning("Pillow/Pytesseract (OCR tool) NOT AVAILABLE.")
    if not WHISPER_AVAILABLE: logger.warning("Whisper (Audio tool) NOT AVAILABLE.")
    if LANGGRAPH_FLAVOR_AVAILABLE: logger.info(f"Core LangGraph components (StateGraph, END, {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'FailedExecutor'}) loaded.")
    else: logger.warning("Core LangGraph FAILED import or essential component (ToolExecutor/Node/Invocation) missing. ReAct fallback. Check requirements & Space build logs.")

    missing_vars_startup_list_global.clear()
    if not GOOGLE_API_KEY: missing_vars_startup_list_global.append("GOOGLE_API_KEY")
    if not HUGGINGFACE_TOKEN: missing_vars_startup_list_global.append("HUGGINGFACE_TOKEN (for GAIA API)")
    if not TAVILY_API_KEY: missing_vars_startup_list_global.append("TAVILY_API_KEY (for Tavily Search)")

    try:
        logger.info("Pre-initializing agent...")
        initialize_agent_and_tools()
        if AGENT_INSTANCE:
            agent_type_name = type(AGENT_INSTANCE).__name__
            agent_pre_init_status_msg_global = f"Agent Pre-initialized: **{agent_type_name}**."
            if LANGGRAPH_FLAVOR_AVAILABLE and ("StateGraph" in agent_type_name or "CompiledGraph" in agent_type_name) :
                 lg_executor_display_name = type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else "UnknownExecutor"
                 agent_pre_init_status_msg_global = f"Agent Pre-initialized: **LangGraph** (Executor: {lg_executor_display_name}, Memory: {LANGGRAPH_MEMORY_SAVER is not None})."
        else: agent_pre_init_status_msg_global = "Agent pre-init FAILED (AGENT_INSTANCE is None)."
        logger.info(agent_pre_init_status_msg_global.replace("**",""))
    except Exception as e:
        agent_pre_init_status_msg_global = f"Agent pre-init CRASHED: {str(e)}"
        logger.critical(f"Agent pre-init CRASHED: {e}", exc_info=True)

    logger.info(f"Space ID: {os.getenv('SPACE_ID', 'Not Set')}")
    logger.info("Gradio Interface launching...")
    demo.queue().launch(debug=os.getenv("GRADIO_DEBUG","false").lower()=="true", share=False, max_threads=20)