Spaces:
Sleeping
Sleeping
File size: 46,670 Bytes
3c1bb16 b4ea2d5 568ad78 170baad 3c1bb16 862dde4 3c1bb16 d984c3b 3c1bb16 568ad78 b696195 3c1bb16 568ad78 3c1bb16 375677d 3c1bb16 05e4e0d 3c1bb16 05e4e0d 3c1bb16 05e4e0d b696195 b4ea2d5 05e4e0d b696195 05e4e0d 170baad b4ea2d5 05e4e0d b696195 b4ea2d5 b696195 b4ea2d5 b696195 05e4e0d b4ea2d5 05e4e0d 3c1bb16 3cf6d34 b696195 3c1bb16 05e4e0d 3c1bb16 b4ea2d5 3c1bb16 f404032 d984c3b 3c1bb16 d984c3b 3c1bb16 375677d 3c1bb16 98cbcc7 3c1bb16 98cbcc7 3c1bb16 d984c3b 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 375677d 3c1bb16 d984c3b 3c1bb16 d984c3b 3c1bb16 375677d 3c1bb16 862dde4 3c1bb16 375677d 3c1bb16 d984c3b 375677d 3c1bb16 862dde4 3c1bb16 375677d 3c1bb16 12a98dc d984c3b 12a98dc 3c1bb16 568ad78 3c1bb16 d984c3b 3c1bb16 12a98dc 3c1bb16 e30c7bc 949751a e30c7bc 0768a20 3c1bb16 0d9032c 949751a 1d80fac d984c3b 949751a 3cf6d34 949751a 3cf6d34 949751a 0768a20 e30c7bc 949751a d984c3b 568ad78 e30c7bc 0768a20 568ad78 0768a20 e30c7bc 949751a 0768a20 12a98dc 0768a20 568ad78 b4ea2d5 0768a20 170baad 862dde4 b696195 12a98dc 862dde4 b696195 12a98dc 862dde4 05e4e0d b696195 949751a 170baad 949751a 568ad78 949751a 170baad 949751a e30c7bc 170baad 568ad78 170baad 568ad78 170baad 949751a 0768a20 949751a 0768a20 170baad 0768a20 e30c7bc 0768a20 e30c7bc 0768a20 e30c7bc 0768a20 e30c7bc 0768a20 3c1bb16 b696195 3c1bb16 b696195 3c1bb16 b696195 3c1bb16 b696195 12a98dc b696195 3c1bb16 b696195 3c1bb16 b696195 b4ea2d5 b696195 3cf6d34 b696195 3cf6d34 3c1bb16 d984c3b 3c1bb16 862dde4 3c1bb16 170baad 3c1bb16 b4ea2d5 3c1bb16 d984c3b 3c1bb16 eea9aff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
# Copyright 2025 Jesus Vilela Jato.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --- Imports ---
import os
import gradio as gr
import requests
import pandas as pd
import json
import logging
from typing import Optional, List, Dict, Any, Tuple, Union, Type, TYPE_CHECKING, Annotated
import hashlib
from urllib.parse import urlparse
import mimetypes
import subprocess # For yt-dlp
import io # For BytesIO with PIL
# --- Global Variables for Startup Status ---
missing_vars_startup_list_global = []
agent_pre_init_status_msg_global = "Agent status will be determined at startup."
# File Processing Libs
try: from PyPDF2 import PdfReader; PYPDF2_AVAILABLE = True
except ImportError: PYPDF2_AVAILABLE = False; print("WARNING: PyPDF2 not found, PDF tool will be disabled.")
try: from PIL import Image; import pytesseract; PIL_TESSERACT_AVAILABLE = True
except ImportError: PIL_TESSERACT_AVAILABLE = False; print("WARNING: Pillow or Pytesseract not found, OCR tool will be disabled.")
try: import whisper; WHISPER_AVAILABLE = True
except ImportError: WHISPER_AVAILABLE = False; print("WARNING: OpenAI Whisper not found, Audio Transcription tool will be disabled.")
# Google GenAI SDK types
from google.genai.types import HarmCategory, HarmBlockThreshold
from google.ai import generativelanguage as glm # For FileState enum
# LangChain
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage, ToolMessage
from langchain.prompts import PromptTemplate
from langchain.tools import BaseTool, tool as lc_tool_decorator
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.agents import AgentExecutor, create_react_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
# LangGraph Conditional Imports
if TYPE_CHECKING:
from langgraph.graph import StateGraph as StateGraphAliasedForHinting
from langgraph.prebuilt import ToolNode as ToolExecutorAliasedForHinting
from typing_extensions import TypedDict
from langgraph.checkpoint.base import BaseCheckpointSaver
LANGGRAPH_FLAVOR_AVAILABLE = False
LG_StateGraph: Optional[Type[Any]] = None
LG_ToolExecutor_Class: Optional[Type[Any]] = None
LG_END: Optional[Any] = None
LG_ToolInvocation: Optional[Type[Any]] = None
add_messages: Optional[Any] = None
MemorySaver_Class: Optional[Type[Any]] = None
AGENT_INSTANCE: Optional[Union[AgentExecutor, Any]] = None
TOOLS: List[BaseTool] = []
LLM_INSTANCE: Optional[ChatGoogleGenerativeAI] = None
LANGGRAPH_MEMORY_SAVER: Optional[Any] = None
# google-genai Client SDK
from google import genai as google_genai_sdk
google_genai_client: Optional[google_genai_sdk.Client] = None
try:
from langgraph.graph import StateGraph, END
try:
from langgraph.prebuilt import ToolNode
LG_ToolExecutor_Class = ToolNode
print("Using langgraph.prebuilt.ToolNode for LangGraph tool execution.")
except ImportError:
try:
from langgraph.prebuilt import ToolExecutor
LG_ToolExecutor_Class = ToolExecutor
print("Using langgraph.prebuilt.ToolExecutor (fallback) for LangGraph tool execution.")
except ImportError as e_lg_exec_inner:
print(f"Failed to import ToolNode and ToolExecutor from langgraph.prebuilt: {e_lg_exec_inner}")
LG_ToolExecutor_Class = None
if LG_ToolExecutor_Class is not None:
try:
from langgraph.prebuilt import ToolInvocation as LGToolInvocationActual
except ImportError:
try:
from langgraph.tools import ToolInvocation as LGToolInvocationActual
print("Imported ToolInvocation from langgraph.tools")
except ImportError as e_ti:
print(f"WARNING: Could not import ToolInvocation from langgraph.prebuilt or langgraph.tools: {e_ti}")
LGToolInvocationActual = None # type: ignore
if LGToolInvocationActual is not None or type(LG_ToolExecutor_Class).__name__ == 'ToolNode':
from langgraph.graph.message import add_messages as lg_add_messages
from langgraph.checkpoint.memory import MemorySaver as LGMemorySaver
LANGGRAPH_FLAVOR_AVAILABLE = True
LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = \
StateGraph, END, LGToolInvocationActual, lg_add_messages, LGMemorySaver # type: ignore
print("Successfully imported essential LangGraph components.")
else:
LANGGRAPH_FLAVOR_AVAILABLE = False
LG_StateGraph, LG_END, add_messages, MemorySaver_Class = (None,) * 4 # type: ignore
print(f"WARNING: LangGraph ToolInvocation not found and may be required by older ToolExecutor. LangGraph agent functionality might be limited or disabled.")
else:
LANGGRAPH_FLAVOR_AVAILABLE = False
LG_StateGraph, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 5 # type: ignore
print(f"WARNING: No suitable LangGraph tool executor (ToolNode/ToolExecutor) found. LangGraph agent will be disabled.")
except ImportError as e:
LANGGRAPH_FLAVOR_AVAILABLE = False
LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class = (None,) * 6
print(f"WARNING: Core LangGraph components (like StateGraph, END) not found or import error: {e}. LangGraph agent will be disabled.")
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
GEMINI_MODEL_NAME = "gemini-2.5-pro"
GEMINI_FLASH_MULTIMODAL_MODEL_NAME = "gemini-1.5-flash-latest"
SCORING_API_BASE_URL = os.getenv("SCORING_API_URL", DEFAULT_API_URL)
MAX_FILE_SIZE_BYTES = 50 * 1024 * 1024
LOCAL_FILE_STORE_PATH = "./Data"
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
# --- Global State ---
WHISPER_MODEL: Optional[Any] = None
# --- Environment Variables & API Keys ---
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY")
HUGGINGFACE_TOKEN = os.environ.get("HF_TOKEN")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
# --- Setup Logging ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(name)s - %(module)s:%(lineno)d - %(message)s')
logger = logging.getLogger(__name__)
# --- Initialize google-genai Client SDK ---
if GOOGLE_API_KEY:
try:
google_genai_client = google_genai_sdk.Client(api_key=GOOGLE_API_KEY)
logger.info("google-genai SDK Client initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize google-genai SDK Client: {e}")
google_genai_client = None
else:
logger.warning("GOOGLE_API_KEY not found. google-genai SDK Client not initialized.")
# --- Helper Functions (Unchanged) ---
def _strip_exact_match_answer(text: Any) -> str:
if not isinstance(text, str): text = str(text)
text_lower_check = text.lower()
if text_lower_check.startswith("final answer:"):
text = text[len("final answer:"):].strip()
text = text.strip()
if text.startswith("```") and text.endswith("```"):
if "\n" in text:
text_content = text.split("\n", 1)[1] if len(text.split("\n", 1)) > 1 else ""
text = text_content.strip()[:-3].strip() if text_content.strip().endswith("```") else text[3:-3].strip()
else: text = text[3:-3].strip()
elif text.startswith("`") and text.endswith("`"): text = text[1:-1].strip()
if (text.startswith('"') and text.endswith('"')) or \
(text.startswith("'") and text.endswith("'")):
if len(text) > 1: text = text[1:-1]
return text.strip()
def _is_full_url(url_string: str) -> bool:
try: result = urlparse(url_string); return all([result.scheme, result.netloc])
except ValueError: return False
def _is_youtube_url(url: str) -> bool:
parsed_url = urlparse(url)
return parsed_url.netloc.lower().endswith(("youtube.com", "youtu.be"))
def _download_file(file_identifier: str, task_id_for_file: Optional[str] = None) -> str:
os.makedirs(LOCAL_FILE_STORE_PATH, exist_ok=True)
logger.debug(f"Download request: '{file_identifier}', task_id: {task_id_for_file}")
original_filename = os.path.basename(urlparse(file_identifier).path) if _is_full_url(file_identifier) else os.path.basename(file_identifier)
if not original_filename or original_filename == '/':
original_filename = hashlib.md5(file_identifier.encode()).hexdigest()[:12] + ".download"
prefix = f"{task_id_for_file}_" if task_id_for_file else ""
sanitized_original_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in original_filename)
tentative_local_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_original_filename}")
if _is_full_url(file_identifier) and _is_youtube_url(file_identifier):
logger.info(f"YouTube URL: {file_identifier}. Using yt-dlp.")
yt_file_hash = hashlib.md5(file_identifier.encode()).hexdigest()[:10]
yt_filename_base = f"youtube_{prefix}{yt_file_hash}"
target_mp3_path = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + ".mp3")
if os.path.exists(target_mp3_path) and os.path.getsize(target_mp3_path) > 0:
logger.info(f"Cached YouTube MP3: {target_mp3_path}"); return target_mp3_path
temp_output_template = os.path.join(LOCAL_FILE_STORE_PATH, yt_filename_base + "_temp.%(ext)s")
try:
command = ['yt-dlp', '--quiet', '--no-warnings', '-x', '--audio-format', 'mp3',
'--audio-quality', '0', '--max-filesize', str(MAX_FILE_SIZE_BYTES),
'-o', temp_output_template, file_identifier]
logger.info(f"yt-dlp command: {' '.join(command)}")
process = subprocess.run(command, capture_output=True, text=True, timeout=180, check=False)
downloaded_temp_file = next((os.path.join(LOCAL_FILE_STORE_PATH, f) for f in os.listdir(LOCAL_FILE_STORE_PATH)
if f.startswith(yt_filename_base + "_temp") and f.endswith(".mp3")), None)
if process.returncode == 0 and downloaded_temp_file and os.path.exists(downloaded_temp_file):
os.rename(downloaded_temp_file, target_mp3_path)
logger.info(f"yt-dlp success: {target_mp3_path}"); return target_mp3_path
else:
err_msg = process.stderr.strip() if process.stderr else "Unknown yt-dlp error"
logger.error(f"yt-dlp failed. RC:{process.returncode}. File:{downloaded_temp_file}. Err:{err_msg[:500]}")
if downloaded_temp_file and os.path.exists(downloaded_temp_file): os.remove(downloaded_temp_file)
return f"Error: yt-dlp failed. Msg:{err_msg[:200]}"
except Exception as e: logger.error(f"yt-dlp exception: {e}", exc_info=True); return f"Error: yt-dlp exception: {str(e)[:200]}"
file_url_to_try = file_identifier if _is_full_url(file_identifier) else None
if not file_url_to_try and task_id_for_file:
file_url_to_try = f"{SCORING_API_BASE_URL.rstrip('/')}/files/{task_id_for_file}"
elif not file_url_to_try:
if os.path.exists(file_identifier): logger.info(f"Using local file: {file_identifier}"); return file_identifier
return f"Error: Not URL, not local, no task_id for '{file_identifier}'."
if os.path.exists(tentative_local_path) and os.path.getsize(tentative_local_path) > 0:
logger.info(f"Cached file (pre-CD): {tentative_local_path}"); return tentative_local_path
effective_save_path = tentative_local_path
try:
auth_headers = {"Authorization": f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN and \
any(s in file_url_to_try for s in [SCORING_API_BASE_URL, ".hf.space", "huggingface.co"]) else {}
logger.info(f"Standard download: {file_url_to_try} (Headers: {list(auth_headers.keys())})")
with requests.get(file_url_to_try, stream=True, headers=auth_headers, timeout=60) as r:
r.raise_for_status()
cd_header = r.headers.get('content-disposition')
filename_from_cd = None
if cd_header:
try:
decoded_cd_header = cd_header.encode('latin-1', 'replace').decode('utf-8', 'replace')
_, params = requests.utils.parse_header_links(decoded_cd_header) # type: ignore
for key, val in params.items():
if key.lower() == 'filename*' and val.lower().startswith("utf-8''"):
filename_from_cd = requests.utils.unquote(val[len("utf-8''"):]); break
elif key.lower() == 'filename':
filename_from_cd = requests.utils.unquote(val)
if filename_from_cd.startswith('"') and filename_from_cd.endswith('"'): filename_from_cd = filename_from_cd[1:-1]
break
except Exception as e_cd: logger.warning(f"CD parse error '{cd_header}': {e_cd}")
if filename_from_cd:
sanitized_cd_filename = "".join(c if c.isalnum() or c in ['.', '_', '-'] else '_' for c in filename_from_cd)
effective_save_path = os.path.join(LOCAL_FILE_STORE_PATH, f"{prefix}{sanitized_cd_filename}")
logger.info(f"Using CD filename: '{sanitized_cd_filename}'. Path: {effective_save_path}")
name_without_ext, current_ext = os.path.splitext(effective_save_path)
if not current_ext:
content_type_header = r.headers.get('content-type', '')
content_type_val = content_type_header.split(';').strip() if content_type_header else ''
if content_type_val:
guessed_ext = mimetypes.guess_extension(content_type_val)
if guessed_ext: effective_save_path += guessed_ext; logger.info(f"Added guessed ext: {guessed_ext}")
if effective_save_path != tentative_local_path and os.path.exists(effective_save_path) and os.path.getsize(effective_save_path) > 0:
logger.info(f"Cached file (CD name): {effective_save_path}"); return effective_save_path
with open(effective_save_path, "wb") as f_download:
for chunk in r.iter_content(chunk_size=1024*1024): f_download.write(chunk)
logger.info(f"File downloaded to {effective_save_path}"); return effective_save_path
except requests.exceptions.HTTPError as e:
err_msg = f"HTTP {e.response.status_code} for {file_url_to_try}. Detail: {e.response.text[:100]}"
logger.error(err_msg, exc_info=False); return f"Error downloading: {err_msg}"
except Exception as e:
logger.error(f"Download error for {file_url_to_try}: {e}", exc_info=True); return f"Error: {str(e)[:100]}"
# --- Tool Function Definitions ---
@lc_tool_decorator
def read_pdf_tool(action_input_json_str: str) -> str:
"""Reads text content from a PDF file. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."""
if not PYPDF2_AVAILABLE: return "Error: PyPDF2 not installed."
try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
except Exception as e: return f"Error parsing JSON for read_pdf_tool: {e}. Input: {action_input_json_str}"
if not file_id: return "Error: 'file_identifier' missing."
path = _download_file(file_id, task_id)
if path.startswith("Error:"): return path
try:
text_content = "";
with open(path, "rb") as f_pdf:
reader = PdfReader(f_pdf)
if reader.is_encrypted:
try: reader.decrypt('')
except: return f"Error: PDF '{path}' encrypted."
for page_num in range(len(reader.pages)):
page = reader.pages[page_num]
text_content += page.extract_text() + "\n\n"
return text_content[:40000]
except Exception as e: return f"Error reading PDF '{path}': {e}"
@lc_tool_decorator
def ocr_image_tool(action_input_json_str: str) -> str:
"""Extracts text from an image using OCR. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns extracted text."""
if not PIL_TESSERACT_AVAILABLE: return "Error: Pillow/Pytesseract not installed."
try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
except Exception as e: return f"Error parsing JSON for ocr_image_tool: {e}. Input: {action_input_json_str}"
if not file_id: return "Error: 'file_identifier' missing."
path = _download_file(file_id, task_id)
if path.startswith("Error:"): return path
try: return pytesseract.image_to_string(Image.open(path))[:40000]
except Exception as e: return f"Error OCR'ing '{path}': {e}"
@lc_tool_decorator
def transcribe_audio_tool(action_input_json_str: str) -> str:
"""Transcribes speech from an audio file (or YouTube URL) to text. Input: JSON '{\"file_identifier\": \"FILENAME_OR_URL_OR_YOUTUBE_URL\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\"}'. Returns transcript."""
global WHISPER_MODEL
if not WHISPER_AVAILABLE: return "Error: Whisper not installed."
try: data = json.loads(action_input_json_str); file_id, task_id = data.get("file_identifier"), data.get("task_id")
except Exception as e: return f"Error parsing JSON for transcribe_audio_tool: {e}. Input: {action_input_json_str}"
if not file_id: return "Error: 'file_identifier' missing."
if WHISPER_MODEL is None:
try: WHISPER_MODEL = whisper.load_model("base"); logger.info("Whisper 'base' model loaded.")
except Exception as e: logger.error(f"Whisper load failed: {e}"); return f"Error: Whisper load: {e}"
path = _download_file(file_id, task_id)
if path.startswith("Error:"): return path
try: result = WHISPER_MODEL.transcribe(path, fp16=False); return result["text"][:40000] # type: ignore
except Exception as e: logger.error(f"Whisper error on '{path}': {e}", exc_info=True); return f"Error transcribing '{path}': {e}"
@lc_tool_decorator
def direct_multimodal_gemini_tool(action_input_json_str: str) -> str:
"""Processes an image file (URL or local path) along with a text prompt using a Gemini multimodal model (gemini-1.5-flash-latest) for tasks like image description, Q&A about the image, or text generation based on the image. Input: JSON '{\"file_identifier\": \"IMAGE_FILENAME_OR_URL\", \"text_prompt\": \"Your question or instruction related to the image.\", \"task_id\": \"TASK_ID_IF_GAIA_FILENAME_ONLY\" (optional)}'. Returns the model's text response."""
global google_genai_client
if not google_genai_client: return "Error: google-genai SDK client not initialized."
if not PIL_TESSERACT_AVAILABLE : return "Error: Pillow (PIL) library not available for image processing."
try:
data = json.loads(action_input_json_str)
file_identifier = data.get("file_identifier")
text_prompt = data.get("text_prompt", "Describe this image.")
task_id = data.get("task_id")
if not file_identifier: return "Error: 'file_identifier' for image missing."
logger.info(f"Direct Multimodal Tool: Processing image '{file_identifier}' with prompt '{text_prompt}'")
local_image_path = _download_file(file_identifier, task_id)
if local_image_path.startswith("Error:"): return f"Error downloading image for Direct MM Tool: {local_image_path}"
try:
pil_image = Image.open(local_image_path)
except Exception as e_img_open: return f"Error opening image file {local_image_path}: {str(e_img_open)}"
model_id_for_client = f"models/{GEMINI_FLASH_MULTIMODAL_MODEL_NAME}" if not GEMINI_FLASH_MULTIMODAL_MODEL_NAME.startswith("models/") else GEMINI_FLASH_MULTIMODAL_MODEL_NAME
response = google_genai_client.models.generate_content(
model=model_id_for_client, contents=[pil_image, text_prompt]
)
logger.info(f"Direct Multimodal Tool: Response received from {model_id_for_client} received.")
return response.text[:40000]
except json.JSONDecodeError as e_json_mm: return f"Error parsing JSON input for Direct MM Tool: {str(e_json_mm)}. Input: {action_input_json_str}"
except Exception as e_tool_mm:
logger.error(f"Error in direct_multimodal_gemini_tool: {e_tool_mm}", exc_info=True)
return f"Error executing Direct Multimodal Tool: {str(e_tool_mm)}"
# --- Agent Prompts ---
LANGGRAPH_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
Your goal is to provide an EXACT MATCH final answer. No conversational text, explanations, or markdown unless explicitly part of the answer.
TOOLS:
You have access to the following tools. Use them if necessary.
{tools}
TOOL USAGE:
- To use a tool, your response must include a `tool_calls` attribute in the AIMessage. Each tool call should be a dictionary with "name", "args" (a dictionary of arguments), and "id".
- For file tools ('read_pdf_tool', 'ocr_image_tool', 'transcribe_audio_tool', 'direct_multimodal_gemini_tool'): The `args` field must be a dictionary with a single key 'action_input_json_str' whose value is a JSON STRING. Example: {{"action_input_json_str": "{{\\"file_identifier\\": \\"file.pdf\\", \\"task_id\\": \\"123\\"}}"}}.
- 'tavily_search_results_json': `args` is like '{{"query": "search query"}}'.
- 'python_repl': `args` is like '{{"query": "python code string"}}'. Use print() for output.
RESPONSE FORMAT:
Final AIMessage should contain ONLY the answer in 'content' and NO 'tool_calls'. If using tools, 'content' can be thought process, with 'tool_calls'.
Begin!"""
REACT_PROMPT_TEMPLATE_STR = """You are a highly intelligent agent for the GAIA benchmark.
Goal: EXACT MATCH answer. No extra text/markdown.
Tools: {tools}
Process: Question -> Thought -> Action (ONE of [{tool_names}]) -> Action Input -> Observation -> Thought ... -> Final Answer: [exact answer]
Tool Inputs:
- tavily_search_results_json: Your search query string.
- python_repl: Python code string. Use print(). For Excel/CSV, use pandas: import pandas as pd; df = pd.read_excel('./Data/TASKID_filename.xlsx'); print(df.head())
- read_pdf_tool, ocr_image_tool, transcribe_audio_tool, direct_multimodal_gemini_tool: JSON string like '{{"file_identifier": "FILENAME_OR_URL", "task_id": "CURRENT_TASK_ID_IF_FILENAME"}}'.
If tool fails or info missing, Final Answer: N/A. Do NOT use unlisted tools.
Begin!
{input}
Thought:{agent_scratchpad}"""
# --- Agent Initialization and Response Logic ---
def initialize_agent_and_tools(force_reinit=False):
global AGENT_INSTANCE, TOOLS, LLM_INSTANCE, LANGGRAPH_FLAVOR_AVAILABLE, LG_StateGraph, LG_ToolExecutor_Class, LG_END, LG_ToolInvocation, add_messages, MemorySaver_Class, LANGGRAPH_MEMORY_SAVER, google_genai_client
if AGENT_INSTANCE and not force_reinit: logger.info("Agent already initialized."); return
logger.info("Initializing agent and tools...")
if not GOOGLE_API_KEY: raise ValueError("GOOGLE_API_KEY not set for LangChain LLM.")
try:
LLM_INSTANCE = ChatGoogleGenerativeAI(
model=GEMINI_MODEL_NAME,
google_api_key=GOOGLE_API_KEY,
temperature=0.0,
timeout=120,
convert_system_message_to_human=False
)
logger.info(f"LangChain LLM (Planner) initialized: {GEMINI_MODEL_NAME} (Using default safety settings, convert_system_message_to_human=False)")
except Exception as e:
logger.error(f"LangChain LLM init FAILED: {e}", exc_info=True)
raise
TOOLS = []
if PYPDF2_AVAILABLE: TOOLS.append(read_pdf_tool)
if PIL_TESSERACT_AVAILABLE: TOOLS.append(ocr_image_tool)
if WHISPER_AVAILABLE: TOOLS.append(transcribe_audio_tool)
if google_genai_client and PIL_TESSERACT_AVAILABLE: TOOLS.append(direct_multimodal_gemini_tool); logger.info("Added 'direct_multimodal_gemini_tool'.")
else: logger.warning("'direct_multimodal_gemini_tool' NOT added (client or PIL missing).")
try:
search_tool = TavilySearchResults(max_results=3)
TOOLS.append(search_tool)
logger.info("Added 'TavilySearchResults' tool.")
except Exception as e: logger.warning(f"TavilySearchResults init failed: {e}")
try: python_repl = PythonREPLTool(name="python_repl"); python_repl.description = "Python REPL. print() for output. The input is a single string of code."; TOOLS.append(python_repl)
except Exception as e: logger.warning(f"PythonREPLTool init failed: {e}")
logger.info(f"Final tools list for agent: {[t.name for t in TOOLS]}")
if LANGGRAPH_FLAVOR_AVAILABLE and all([LG_StateGraph, LG_ToolExecutor_Class, LG_END, LLM_INSTANCE, add_messages]):
if not LANGGRAPH_MEMORY_SAVER and MemorySaver_Class: LANGGRAPH_MEMORY_SAVER = MemorySaver_Class(); logger.info("LangGraph MemorySaver initialized.")
try:
logger.info(f"Attempting LangGraph init (Tool Executor type: {LG_ToolExecutor_Class.__name__ if LG_ToolExecutor_Class else 'None'})")
_TypedDict = getattr(__import__('typing_extensions'), 'TypedDict', dict)
class AgentState(_TypedDict):
messages: Annotated[List[Any], add_messages]
base_system_prompt_content_lg = LANGGRAPH_PROMPT_TEMPLATE_STR
def agent_node(state: AgentState):
system_message_content = base_system_prompt_content_lg.format(
tools="\n".join([f"- {t.name}: {t.description}" for t in TOOLS])
)
messages_for_llm = [SystemMessage(content=system_message_content)]
messages_for_llm.extend(state['messages'])
logger.debug(f"LangGraph agent_node - messages_for_llm: {messages_for_llm}")
if not messages_for_llm or not any(isinstance(m, (HumanMessage, ToolMessage)) for m in messages_for_llm):
logger.error("LLM call would fail in agent_node: No HumanMessage or ToolMessage found in history.")
return {"messages": [AIMessage(content="[ERROR] Agent node: No user input found in messages.")]}
bound_llm = LLM_INSTANCE.bind_tools(TOOLS)
response = bound_llm.invoke(messages_for_llm)
return {"messages": [response]}
if not LG_ToolExecutor_Class: raise ValueError("LG_ToolExecutor_Class is None for LangGraph.")
tool_executor_instance_lg = LG_ToolExecutor_Class(tools=TOOLS)
def tool_node(state: AgentState):
last_msg = state['messages'][-1] if state.get('messages') and isinstance(state['messages'][-1], AIMessage) else None
if not last_msg or not last_msg.tool_calls: return {"messages": []}
tool_results = []
for tc in last_msg.tool_calls:
name, args, tc_id = tc.get('name'), tc.get('args'), tc.get('id')
if not all([name, isinstance(args, dict), tc_id]):
err_msg=f"Invalid tool_call: {tc}"; logger.error(err_msg)
tool_results.append(ToolMessage(f"Error: {err_msg}", tool_call_id=tc_id or "error_id", name=name or "error_tool"))
continue
try:
logger.info(f"LG Tool Invoking: '{name}' with {args} (ID: {tc_id})")
if LG_ToolInvocation and type(LG_ToolExecutor_Class).__name__ != 'ToolNode':
invocation = LG_ToolInvocation(tool=name, tool_input=args)
output_lg = tool_executor_instance_lg.invoke(invocation) # type: ignore
else:
output_lg = tool_executor_instance_lg.invoke(tc) # type: ignore
tool_results.append(ToolMessage(content=str(output_lg), tool_call_id=tc_id, name=name))
except Exception as e_tool_node_lg:
logger.error(f"LG Tool Error ('{name}'): {e_tool_node_lg}", exc_info=True)
tool_results.append(ToolMessage(content=f"Error for tool {name}: {str(e_tool_node_lg)}", tool_call_id=tc_id, name=name))
return {"messages": tool_results}
workflow_lg = LG_StateGraph(AgentState) # type: ignore
workflow_lg.add_node("agent", agent_node)
workflow_lg.add_node("tools", tool_node)
workflow_lg.set_entry_point("agent")
def should_continue_lg(state: AgentState): return "tools" if state['messages'][-1].tool_calls else LG_END
workflow_lg.add_conditional_edges("agent", should_continue_lg, {"tools": "tools", LG_END: LG_END}) # type: ignore
workflow_lg.add_edge("tools", "agent")
AGENT_INSTANCE = workflow_lg.compile(checkpointer=LANGGRAPH_MEMORY_SAVER) if LANGGRAPH_MEMORY_SAVER else workflow_lg.compile()
logger.info(f"LangGraph compiled (Memory: {LANGGRAPH_MEMORY_SAVER is not None}).")
except Exception as e_lg_init_main:
logger.error(f"LangGraph init error: {e_lg_init_main}. Fallback ReAct.", exc_info=True); AGENT_INSTANCE = None
else:
logger.info("Skipping LangGraph: core components missing or LLM not ready."); AGENT_INSTANCE = None
if not AGENT_INSTANCE:
logger.info("Initializing ReAct agent as fallback.")
try:
if not LLM_INSTANCE: raise ValueError("LLM_INSTANCE is None for ReAct.")
prompt_react_instance = PromptTemplate.from_template(REACT_PROMPT_TEMPLATE_STR).partial(
tools="\n".join([f"- {t.name}:{t.description}" for t in TOOLS]),
tool_names=",".join([t.name for t in TOOLS])
)
react_agent_runnable_instance = create_react_agent(LLM_INSTANCE, TOOLS, prompt_react_instance)
AGENT_INSTANCE = AgentExecutor(agent=react_agent_runnable_instance, tools=TOOLS, verbose=True, handle_parsing_errors=True, max_iterations=15, early_stopping_method="force")
logger.info("ReAct agent initialized.")
except Exception as e_react_init_main:
logger.error(f"ReAct agent init failed: {e_react_init_main}", exc_info=True); AGENT_INSTANCE = None
if not AGENT_INSTANCE: raise RuntimeError("CRITICAL: Agent initialization completely failed.")
logger.info(f"Agent init finished. Active agent type: {type(AGENT_INSTANCE).__name__}")
def get_agent_response(prompt: str, task_id: Optional[str]=None, thread_id: Optional[str]=None) -> str:
global AGENT_INSTANCE, LLM_INSTANCE
thread_id_to_use = thread_id or (f"gaia_task_{task_id}" if task_id else hashlib.md5(prompt.encode()).hexdigest()[:8])
if not AGENT_INSTANCE or not LLM_INSTANCE:
logger.warning("Agent/LLM not initialized in get_agent_response. Attempting re-initialization.")
try: initialize_agent_and_tools(force_reinit=True)
except Exception as e_reinit_get: logger.error(f"Re-initialization failed: {e_reinit_get}"); return f"[ERROR] Agent/LLM re-init failed: {str(e_reinit_get)}"
if not AGENT_INSTANCE or not LLM_INSTANCE: return "[ERROR] Agent/LLM still None after re-init."
agent_name_get = type(AGENT_INSTANCE).__name__
logger.info(f"Agent ({agent_name_get}) processing. Task: {task_id or 'N/A'}. Thread: {thread_id_to_use}. Prompt: {prompt[:100]}...")
is_langgraph_agent_get = LANGGRAPH_FLAVOR_AVAILABLE and AGENT_INSTANCE and hasattr(AGENT_INSTANCE, 'graph') and hasattr(AGENT_INSTANCE, 'config_schema')
try:
if is_langgraph_agent_get:
logger.debug(f"Using LangGraph agent for thread: {thread_id_to_use}")
input_for_lg_get = {"messages": [HumanMessage(content=prompt)]}
logger.debug(f"Invoking LangGraph with input: {input_for_lg_get}")
final_state_lg_get = AGENT_INSTANCE.invoke(input_for_lg_get, {"configurable": {"thread_id": thread_id_to_use}})
logger.debug(f"LangGraph final_state_lg_get: {final_state_lg_get}")
if not final_state_lg_get or 'messages' not in final_state_lg_get or not final_state_lg_get['messages']:
logger.error("LangGraph: No final state or messages found in the output.")
return "[ERROR] LangGraph: No final state or messages."
for message_item_lg_get in reversed(final_state_lg_get['messages']):
if isinstance(message_item_lg_get, AIMessage) and not message_item_lg_get.tool_calls:
if isinstance(message_item_lg_get.content, str):
return message_item_lg_get.content
elif isinstance(message_item_lg_get.content, list) and message_item_lg_get.content:
final_text_parts = [part.get("text", "") if isinstance(part, dict) and part.get("type")=="text" else (str(part) if isinstance(part, str) else "") for part in message_item_lg_get.content]
return " ".join(filter(None, final_text_parts))
else:
logger.warning(f"LangGraph: Final AIMessage content not string or parsable list: {type(message_item_lg_get.content)}")
return f"[WARN] AIMessage content type not string: {str(message_item_lg_get.content)[:100]}"
logger.warning("LangGraph: No AIMessage without tool_calls found as final answer. Examining last message.")
last_message_in_history = final_state_lg_get['messages'][-1]
if hasattr(last_message_in_history, 'content') and isinstance(last_message_in_history.content, str):
return f"[INFO] Fallback to last message content: {str(last_message_in_history.content)}"
elif hasattr(last_message_in_history, 'content') and isinstance(last_message_in_history.content, list):
return f"[INFO] Fallback to last message (list content): {str(last_message_in_history.content)[:150]}"
elif isinstance(last_message_in_history, ToolMessage):
return f"[INFO] Fallback to ToolMessage content: {str(last_message_in_history.content)[:150]}"
else:
logger.error(f"LangGraph: Could not extract string content from the very last message: {last_message_in_history}")
return "[ERROR] LangGraph: Could not extract final answer from messages."
elif isinstance(AGENT_INSTANCE, AgentExecutor):
logger.debug("Using ReAct agent for get_agent_response.")
react_input = {"input": prompt}
logger.debug(f"ReAct input: {react_input}")
response_react_get = AGENT_INSTANCE.invoke(react_input)
logger.debug(f"ReAct response: {response_react_get}")
return str(response_react_get.get("output", "[ERROR] ReAct: No 'output' key in response."))
else:
logger.error(f"Unknown agent type: {agent_name_get}"); return f"[ERROR] Unknown agent type: {agent_name_get}"
except Exception as e_agent_run_get:
logger.error(f"Error during agent execution ({agent_name_get}): {e_agent_run_get}", exc_info=True)
return f"[ERROR] Agent execution failed: {str(e_agent_run_get)[:150]}"
def construct_prompt_for_agent(q: Dict[str,Any]) -> str:
tid,q_str=q.get("task_id","N/A"),q.get("question",""); files=q.get("files",[])
files_info = ("\nFiles:\n"+"\n".join([f"- {f} (task_id:{tid})"for f in files])) if files else ""
level = f"\nLevel:{q.get('level')}" if q.get('level') else ""
return f"Task ID:{tid}{level}{files_info}\n\nQuestion:{q_str}"
def run_and_submit_all(profile: Optional[gr.OAuthProfile] = None):
global AGENT_INSTANCE
space_id = os.getenv("SPACE_ID")
username_for_submission = None
if profile and hasattr(profile, 'username') and profile.username:
username_for_submission = profile.username
logger.info(f"Username from OAuth profile: {username_for_submission}")
else:
logger.warning("OAuth profile not available or username missing.")
return "Hugging Face login required. Please use the login button and try again.", None
if AGENT_INSTANCE is None:
try: logger.info("Agent not pre-initialized. Initializing for run..."); initialize_agent_and_tools()
except Exception as e: return f"Agent on-demand initialization failed: {e}", None
if AGENT_INSTANCE is None: return "Agent is still None after on-demand init.", None
agent_code_url_run=f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_dev_run"
questions_url_run,submit_url_run=f"{DEFAULT_API_URL}/questions",f"{DEFAULT_API_URL}/submit"
auth_headers_run={"Authorization":f"Bearer {HUGGINGFACE_TOKEN}"} if HUGGINGFACE_TOKEN else {}
try:
logger.info(f"Fetching questions from {questions_url_run}")
response_q_run=requests.get(questions_url_run,headers=auth_headers_run,timeout=30);response_q_run.raise_for_status();questions_data_run=response_q_run.json()
if not questions_data_run or not isinstance(questions_data_run,list):logger.error(f"Invalid questions data: {questions_data_run}");return "Fetched questions_data invalid.",None
logger.info(f"Fetched {len(questions_data_run)} questions.")
except Exception as e:logger.error(f"Fetch questions error: {e}",exc_info=True);return f"Fetch questions error:{e}",None
results_log_run,answers_payload_run=[],[]
logger.info(f"Running agent on {len(questions_data_run)} questions for user '{username_for_submission}'...")
for i,item_run in enumerate(questions_data_run):
task_id_run,question_text_run=item_run.get("task_id"),item_run.get("question")
if not task_id_run or question_text_run is None:logger.warning(f"Skipping item: {item_run}");continue
prompt_run=construct_prompt_for_agent(item_run);thread_id_run=f"gaia_batch_task_{task_id_run}"
logger.info(f"Processing Q {i+1}/{len(questions_data_run)} - Task: {task_id_run}")
try:
raw_answer_run=get_agent_response(prompt_run,task_id=task_id_run,thread_id=thread_id_run);submitted_answer_run=_strip_exact_match_answer(raw_answer_run)
answers_payload_run.append({"task_id":task_id_run,"submitted_answer":submitted_answer_run})
results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":raw_answer_run,"Submitted Answer":submitted_answer_run})
except Exception as e:
logger.error(f"Agent error task {task_id_run}:{e}",exc_info=True);error_answer_run=f"AGENT ERROR:{str(e)[:100]}"
answers_payload_run.append({"task_id":task_id_run,"submitted_answer":"N/A [AGENT_ERROR]"})
results_log_run.append({"Task ID":task_id_run,"Question":question_text_run,"Full Agent Prompt":prompt_run,"Raw Agent Output":error_answer_run,"Submitted Answer":"N/A [AGENT_ERROR]"})
if not answers_payload_run:return "Agent produced no answers.",pd.DataFrame(results_log_run)
submission_payload_run={"username":username_for_submission.strip(),"agent_code":agent_code_url_run,"answers":answers_payload_run}
logger.info(f"Submitting {len(answers_payload_run)} answers to {submit_url_run} for user '{username_for_submission}'...")
submission_headers_run={"Content-Type":"application/json",**auth_headers_run}
try:
response_s_run=requests.post(submit_url_run,json=submission_payload_run,headers=submission_headers_run,timeout=120);response_s_run.raise_for_status();submission_result_run=response_s_run.json()
result_message_run=(f"User:{submission_result_run.get('username',username_for_submission)}\nScore:{submission_result_run.get('score','N/A')}% ({submission_result_run.get('correct_count','?')}/{submission_result_run.get('total_attempted','?')})\nMsg:{submission_result_run.get('message','N/A')}")
logger.info(f"Submission OK! {result_message_run}");return f"Submission OK!\n{result_message_run}",pd.DataFrame(results_log_run,columns=["Task ID","Question","Full Agent Prompt","Raw Agent Output","Submitted Answer"])
except requests.exceptions.HTTPError as e:
error_http_run=f"HTTP {e.response.status_code}. Detail:{e.response.text[:200]}"; logger.error(f"Submit Fail:{error_http_run}",exc_info=True); return f"Submit Fail:{error_http_run}",pd.DataFrame(results_log_run)
except Exception as e:logger.error(f"Submit Fail unexpected:{e}",exc_info=True);return f"Submit Fail:{str(e)[:100]}",pd.DataFrame(results_log_run)
# --- Build Gradio Interface ---
with gr.Blocks(css=".gradio-container {max-width:1280px !important;margin:auto !important;}",theme=gr.themes.Soft()) as demo:
gr.Markdown("# GAIA Agent Challenge Runner v7 (OAuth for Username)")
gr.Markdown(f"""**Instructions:**
1. **Login with Hugging Face** using the button below. Your HF username will be used for submission.
2. Click 'Run Evaluation & Submit' to process GAIA questions (typically 20).
3. **Goal: 30%+ (6/20).** Agent uses Gemini Pro ({GEMINI_MODEL_NAME}) as planner. Tools include Web Search, Python, PDF, OCR, Audio/YouTube, and a new Direct Multimodal tool using Gemini Flash ({GEMINI_FLASH_MULTIMODAL_MODEL_NAME}).
4. Ensure `GOOGLE_API_KEY`, `HUGGINGFACE_TOKEN`, and `TAVILY_API_KEY` are Space secrets.
5. Check Space logs for details. LangGraph is attempted (ReAct fallback).""")
agent_status_display = gr.Markdown("**Agent Status:** Initializing...")
missing_secrets_display = gr.Markdown("")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=7, interactive=False)
results_table = gr.DataFrame(label="Q&A Log", headers=["Task ID","Question","Prompt","Raw","Submitted"], wrap=True)
run_button.click(fn=run_and_submit_all, outputs=[status_output,results_table], api_name="run_evaluation")
def update_ui_on_load_fn_within_context():
global missing_vars_startup_list_global, agent_pre_init_status_msg_global
secrets_msg_md = ""
if missing_vars_startup_list_global:
secrets_msg_md = f"<font color='red'>**⚠️ Secrets Missing:** {', '.join(missing_vars_startup_list_global)}.</font>"
env_issues = []
try: subprocess.run(['yt-dlp','--version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
except: env_issues.append("yt-dlp"); logger.warning("yt-dlp check failed (UI load).")
try: subprocess.run(['ffmpeg','-version'],check=True,stdout=subprocess.DEVNULL,stderr=subprocess.DEVNULL)
except: env_issues.append("ffmpeg"); logger.warning("ffmpeg check failed (UI load).")
if env_issues: secrets_msg_md += f"<br/><font color='orange'>**Tool Deps Missing:** {', '.join(env_issues)}.</font>"
current_status_md = agent_pre_init_status_msg_global
if not LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
current_status_md += f" (LangGraph core components not fully loaded: LG_ToolExecutor_Class is {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'None'}, ReAct fallback.)"
elif LANGGRAPH_FLAVOR_AVAILABLE and "LangGraph" not in current_status_md:
current_status_md += f" (LangGraph ready with {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'UnknownExecutor'}.)"
return { agent_status_display: gr.Markdown(value=current_status_md),
missing_secrets_display: gr.Markdown(value=secrets_msg_md) }
demo.load(update_ui_on_load_fn_within_context, [], [agent_status_display, missing_secrets_display])
if __name__ == "__main__":
logger.info(f"Application starting up (v7.2 - Agent Node Message & LLM Safety Fix)...")
if not PYPDF2_AVAILABLE: logger.warning("PyPDF2 (PDF tool) NOT AVAILABLE.")
if not PIL_TESSERACT_AVAILABLE: logger.warning("Pillow/Pytesseract (OCR tool) NOT AVAILABLE.")
if not WHISPER_AVAILABLE: logger.warning("Whisper (Audio tool) NOT AVAILABLE.")
if LANGGRAPH_FLAVOR_AVAILABLE: logger.info(f"Core LangGraph components (StateGraph, END, {type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else 'FailedExecutor'}) loaded.")
else: logger.warning("Core LangGraph FAILED import or essential component (ToolExecutor/Node/Invocation) missing. ReAct fallback. Check requirements & Space build logs.")
missing_vars_startup_list_global.clear()
if not GOOGLE_API_KEY: missing_vars_startup_list_global.append("GOOGLE_API_KEY")
if not HUGGINGFACE_TOKEN: missing_vars_startup_list_global.append("HUGGINGFACE_TOKEN (for GAIA API)")
if not TAVILY_API_KEY: missing_vars_startup_list_global.append("TAVILY_API_KEY (for Tavily Search)")
try:
logger.info("Pre-initializing agent...")
initialize_agent_and_tools()
if AGENT_INSTANCE:
agent_type_name = type(AGENT_INSTANCE).__name__
agent_pre_init_status_msg_global = f"Agent Pre-initialized: **{agent_type_name}**."
if LANGGRAPH_FLAVOR_AVAILABLE and ("StateGraph" in agent_type_name or "CompiledGraph" in agent_type_name) :
lg_executor_display_name = type(LG_ToolExecutor_Class).__name__ if LG_ToolExecutor_Class else "UnknownExecutor"
agent_pre_init_status_msg_global = f"Agent Pre-initialized: **LangGraph** (Executor: {lg_executor_display_name}, Memory: {LANGGRAPH_MEMORY_SAVER is not None})."
else: agent_pre_init_status_msg_global = "Agent pre-init FAILED (AGENT_INSTANCE is None)."
logger.info(agent_pre_init_status_msg_global.replace("**",""))
except Exception as e:
agent_pre_init_status_msg_global = f"Agent pre-init CRASHED: {str(e)}"
logger.critical(f"Agent pre-init CRASHED: {e}", exc_info=True)
logger.info(f"Space ID: {os.getenv('SPACE_ID', 'Not Set')}")
logger.info("Gradio Interface launching...")
demo.queue().launch(debug=os.getenv("GRADIO_DEBUG","false").lower()=="true", share=False, max_threads=20) |