Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,798 Bytes
3718631 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""
RAG Retrieval Utilities for gprMax Documentation
Provides search and retrieval functions for the vector database
"""
import logging
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import json
import chromadb
from dataclasses import dataclass
logger = logging.getLogger(__name__)
@dataclass
class SearchResult:
"""Container for search results"""
text: str
score: float
metadata: Dict[str, Any]
def __str__(self) -> str:
return f"[Score: {self.score:.3f}] {self.metadata.get('source', 'Unknown')}: {self.text[:100]}..."
# Removed QwenEmbeddingModel class - using ChromaDB's default embedding
class GprMaxRAGRetriever:
"""Retriever for gprMax documentation RAG database"""
def __init__(self, db_path: Path = None):
if db_path is None:
db_path = Path(__file__).parent / "chroma_db"
if not db_path.exists():
raise ValueError(f"Database path {db_path} does not exist. Run generate_db.py first.")
self.db_path = db_path
# Load metadata
metadata_path = db_path / "metadata.json"
if metadata_path.exists():
with open(metadata_path, 'r') as f:
self.metadata = json.load(f)
else:
self.metadata = {}
# Initialize ChromaDB client
self.client = chromadb.PersistentClient(path=str(db_path))
# Get collection
self.collection_name = self.metadata.get("collection_name", "gprmax_docs_v1")
try:
print(f"[RAG] Loading collection: {self.collection_name}")
self.collection = self.client.get_collection(self.collection_name)
doc_count = self.collection.count()
print(f"[RAG] Loaded collection: {self.collection_name} with {doc_count} documents")
logger.info(f"Loaded collection: {self.collection_name} with {doc_count} documents")
except Exception as e:
print(f"[RAG] ERROR loading collection: {e}")
raise ValueError(f"Failed to load collection {self.collection_name}: {e}")
def search(
self,
query: str,
k: int = 10,
threshold: float = 0.0,
filter_metadata: Optional[Dict[str, Any]] = None
) -> List[SearchResult]:
"""
Search for relevant documents
Args:
query: Search query text
k: Number of results to return
threshold: Minimum similarity score threshold
filter_metadata: Optional metadata filters
Returns:
List of SearchResult objects
"""
# Search in ChromaDB (it will generate embeddings automatically)
try:
results = self.collection.query(
query_texts=[query], # Use query_texts instead of query_embeddings
n_results=k,
where=filter_metadata if filter_metadata else None,
include=["documents", "metadatas", "distances"]
)
logger.info(f"ChromaDB query returned: {len(results.get('documents', [[]])[0]) if results.get('documents') else 0} results")
except Exception as e:
logger.error(f"ChromaDB query failed: {e}")
raise
# Convert to SearchResult objects
search_results = []
if results["documents"] and results["documents"][0]:
for doc, meta, dist in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0]
):
# Convert distance to similarity score (1 - normalized_distance)
score = 1.0 - (dist / 2.0) # Assuming cosine distance in [-1, 1]
if score >= threshold:
search_results.append(SearchResult(
text=doc,
score=score,
metadata=meta
))
return search_results
def get_context(
self,
query: str,
k: int = 3,
max_context_length: int = 2000,
format_as_markdown: bool = True
) -> str:
"""
Get formatted context for a query
Args:
query: Search query
k: Number of documents to retrieve
max_context_length: Maximum total context length
format_as_markdown: Format output as markdown
Returns:
Formatted context string
"""
results = self.search(query, k=k)
if not results:
return "No relevant documentation found."
context_parts = []
total_length = 0
for i, result in enumerate(results, 1):
if total_length >= max_context_length:
break
# Truncate if needed
text = result.text
if total_length + len(text) > max_context_length:
text = text[:max_context_length - total_length]
if format_as_markdown:
source = result.metadata.get("source", "Unknown")
context_parts.append(
f"### Document {i} (Source: {source}, Score: {result.score:.3f})\n"
f"```\n{text}\n```\n"
)
else:
context_parts.append(text)
total_length += len(text)
return "\n".join(context_parts)
def get_relevant_files(self, query: str, k: int = 5) -> List[str]:
"""Get list of relevant source files for a query"""
results = self.search(query, k=k)
# Extract unique source files
sources = set()
for result in results:
source = result.metadata.get("source")
if source:
sources.add(source)
return sorted(list(sources))
def search_by_file(self, file_pattern: str, k: int = 10) -> List[SearchResult]:
"""Search for documents from specific files"""
# This would need ChromaDB's where clause with pattern matching
# For now, we do a broad search and filter
results = self.collection.get(
limit=1000, # Get many results
include=["documents", "metadatas"]
)
filtered_results = []
if results["documents"]:
for doc, meta in zip(results["documents"], results["metadatas"]):
source = meta.get("source", "")
if file_pattern.lower() in source.lower():
filtered_results.append(SearchResult(
text=doc,
score=1.0, # No score for direct retrieval
metadata=meta
))
if len(filtered_results) >= k:
break
return filtered_results
def get_stats(self) -> Dict[str, Any]:
"""Get database statistics"""
stats = {
"total_documents": self.collection.count(),
"database_path": str(self.db_path),
"collection_name": self.collection_name,
"embedding_model": self.metadata.get("embedding_model", "Unknown"),
"created_at": self.metadata.get("created_at", "Unknown"),
"chunk_size": self.metadata.get("chunk_size", "Unknown"),
"chunk_overlap": self.metadata.get("chunk_overlap", "Unknown")
}
return stats
def create_retriever(db_path: Optional[Path] = None) -> GprMaxRAGRetriever:
"""Factory function to create a retriever instance"""
return GprMaxRAGRetriever(db_path=db_path)
if __name__ == "__main__":
# Example usage
import sys
if len(sys.argv) > 1:
query = " ".join(sys.argv[1:])
else:
query = "How to create a source in gprMax?"
print(f"Testing retriever with query: '{query}'")
print("-" * 80)
try:
retriever = create_retriever()
# Get stats
stats = retriever.get_stats()
print(f"Database stats: {stats}")
print("-" * 80)
# Search
results = retriever.search(query, k=3)
print(f"Found {len(results)} results:")
for i, result in enumerate(results, 1):
print(f"\n{i}. {result}")
# Get formatted context
print("\n" + "=" * 80)
print("Formatted context:")
print(retriever.get_context(query, k=3))
except Exception as e:
print(f"Error: {e}")
sys.exit(1) |