Spaces:
Running
Running
| from typing import Optional, Union, List, Dict | |
| import numpy as np | |
| import torchaudio | |
| import soundfile as sf | |
| import os | |
| import torch | |
| import gc | |
| import gradio as gr | |
| from datetime import datetime | |
| from uvr.models import MDX, Demucs, VrNetwork, MDXC | |
| from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH | |
| from modules.utils.files_manager import load_yaml, save_yaml, is_video | |
| from modules.diarize.audio_loader import load_audio | |
| class MusicSeparator: | |
| def __init__(self, | |
| model_dir: Optional[str] = None, | |
| output_dir: Optional[str] = None): | |
| self.model = None | |
| self.device = self.get_device() | |
| self.available_devices = ["cpu", "cuda"] | |
| self.model_dir = model_dir | |
| self.output_dir = output_dir | |
| instrumental_output_dir = os.path.join(self.output_dir, "instrumental") | |
| vocals_output_dir = os.path.join(self.output_dir, "vocals") | |
| os.makedirs(instrumental_output_dir, exist_ok=True) | |
| os.makedirs(vocals_output_dir, exist_ok=True) | |
| self.audio_info = None | |
| self.available_models = ["UVR-MDX-NET-Inst_HQ_4", "UVR-MDX-NET-Inst_3"] | |
| self.default_model = self.available_models[0] | |
| self.current_model_size = self.default_model | |
| self.model_config = { | |
| "segment": 256, | |
| "split": True | |
| } | |
| def update_model(self, | |
| model_name: str = "UVR-MDX-NET-Inst_1", | |
| device: Optional[str] = None, | |
| segment_size: int = 256): | |
| """ | |
| Update model with the given model name | |
| Args: | |
| model_name (str): Model name. | |
| device (str): Device to use for the model. | |
| segment_size (int): Segment size for the prediction. | |
| """ | |
| if device is None: | |
| device = self.device | |
| self.device = device | |
| self.model_config = { | |
| "segment": segment_size, | |
| "split": True | |
| } | |
| self.model = MDX(name=model_name, | |
| other_metadata=self.model_config, | |
| device=self.device, | |
| logger=None, | |
| model_dir=self.model_dir) | |
| def separate(self, | |
| audio: Union[str, np.ndarray], | |
| model_name: str, | |
| device: Optional[str] = None, | |
| segment_size: int = 256, | |
| save_file: bool = False, | |
| progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]: | |
| """ | |
| Separate the background music from the audio. | |
| Args: | |
| audio (Union[str, np.ndarray]): Audio path or numpy array. | |
| model_name (str): Model name. | |
| device (str): Device to use for the model. | |
| segment_size (int): Segment size for the prediction. | |
| save_file (bool): Whether to save the separated audio to output path or not. | |
| progress (gr.Progress): Gradio progress indicator. | |
| Returns: | |
| A Tuple of | |
| np.ndarray: Instrumental numpy arrays. | |
| np.ndarray: Vocals numpy arrays. | |
| file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False. | |
| """ | |
| if isinstance(audio, str): | |
| output_filename, ext = os.path.basename(audio), ".wav" | |
| output_filename, orig_ext = os.path.splitext(output_filename) | |
| if is_video(audio): | |
| audio = load_audio(audio) | |
| sample_rate = 16000 | |
| else: | |
| self.audio_info = torchaudio.info(audio) | |
| sample_rate = self.audio_info.sample_rate | |
| else: | |
| timestamp = datetime.now().strftime("%m%d%H%M%S") | |
| output_filename, ext = f"UVR-{timestamp}", ".wav" | |
| sample_rate = 16000 | |
| model_config = { | |
| "segment": segment_size, | |
| "split": True | |
| } | |
| if (self.model is None or | |
| self.current_model_size != model_name or | |
| self.model_config != model_config or | |
| self.model.sample_rate != sample_rate or | |
| self.device != device): | |
| progress(0, desc="Initializing UVR Model..") | |
| self.update_model( | |
| model_name=model_name, | |
| device=device, | |
| segment_size=segment_size | |
| ) | |
| self.model.sample_rate = sample_rate | |
| progress(0, desc="Separating background music from the audio..") | |
| result = self.model(audio) | |
| instrumental, vocals = result["instrumental"].T, result["vocals"].T | |
| file_paths = [] | |
| if save_file: | |
| instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}") | |
| vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}") | |
| sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV") | |
| sf.write(vocals_output_path, vocals, sample_rate, format="WAV") | |
| file_paths += [instrumental_output_path, vocals_output_path] | |
| return instrumental, vocals, file_paths | |
| def separate_files(self, | |
| files: List, | |
| model_name: str, | |
| device: Optional[str] = None, | |
| segment_size: int = 256, | |
| save_file: bool = True, | |
| progress: gr.Progress = gr.Progress()) -> List[str]: | |
| """Separate the background music from the audio files. Returns only last Instrumental and vocals file paths | |
| to display into gr.Audio()""" | |
| self.cache_parameters(model_size=model_name, segment_size=segment_size) | |
| for file_path in files: | |
| instrumental, vocals, file_paths = self.separate( | |
| audio=file_path, | |
| model_name=model_name, | |
| device=device, | |
| segment_size=segment_size, | |
| save_file=save_file, | |
| progress=progress | |
| ) | |
| return file_paths | |
| def get_device(): | |
| """Get device for the model""" | |
| return "cuda" if torch.cuda.is_available() else "cpu" | |
| def offload(self): | |
| """Offload the model and free up the memory""" | |
| if self.model is not None: | |
| del self.model | |
| self.model = None | |
| if self.device == "cuda": | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| self.audio_info = None | |
| def cache_parameters(model_size: str, | |
| segment_size: int): | |
| cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH) | |
| cached_uvr_params = cached_params["bgm_separation"] | |
| uvr_params_to_cache = { | |
| "model_size": model_size, | |
| "segment_size": segment_size | |
| } | |
| cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache} | |
| cached_params["bgm_separation"] = cached_uvr_params | |
| save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH) | |