Spaces:
Running
Running
jhj0517
commited on
Commit
·
6c0624c
1
Parent(s):
a9ef2b0
better path
Browse files- app.py +1 -1
- modules/nllb_inference.py +3 -3
- modules/whisper_Inference.py +6 -6
- modules/youtube_manager.py +2 -1
app.py
CHANGED
|
@@ -124,7 +124,7 @@ with block:
|
|
| 124 |
btn_run.click(fn=nllb_inf.translate_file,
|
| 125 |
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang],
|
| 126 |
outputs=[tb_indicator])
|
| 127 |
-
btn_openfolder.click(fn=lambda: open_folder("outputs
|
| 128 |
|
| 129 |
|
| 130 |
block.launch()
|
|
|
|
| 124 |
btn_run.click(fn=nllb_inf.translate_file,
|
| 125 |
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang],
|
| 126 |
outputs=[tb_indicator])
|
| 127 |
+
btn_openfolder.click(fn=lambda: open_folder(os.path.join("outputs", "translations")), inputs=None, outputs=None)
|
| 128 |
|
| 129 |
|
| 130 |
block.launch()
|
modules/nllb_inference.py
CHANGED
|
@@ -37,9 +37,9 @@ class NLLBInference(BaseInterface):
|
|
| 37 |
progress(0, desc="Initializing NLLB Model..")
|
| 38 |
self.current_model_size = model_size
|
| 39 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path=model_size,
|
| 40 |
-
cache_dir="models
|
| 41 |
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_size,
|
| 42 |
-
cache_dir=
|
| 43 |
|
| 44 |
src_lang = NLLB_AVAILABLE_LANGS[src_lang]
|
| 45 |
tgt_lang = NLLB_AVAILABLE_LANGS[tgt_lang]
|
|
@@ -66,7 +66,7 @@ class NLLBInference(BaseInterface):
|
|
| 66 |
|
| 67 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 68 |
file_name = file_name[:-9]
|
| 69 |
-
output_path =
|
| 70 |
|
| 71 |
write_file(subtitle, f"{output_path}.srt")
|
| 72 |
|
|
|
|
| 37 |
progress(0, desc="Initializing NLLB Model..")
|
| 38 |
self.current_model_size = model_size
|
| 39 |
self.model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path=model_size,
|
| 40 |
+
cache_dir=os.path.join("models", "NLLB"))
|
| 41 |
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_size,
|
| 42 |
+
cache_dir=os.path.join("models", "NLLB", "tokenizers"))
|
| 43 |
|
| 44 |
src_lang = NLLB_AVAILABLE_LANGS[src_lang]
|
| 45 |
tgt_lang = NLLB_AVAILABLE_LANGS[tgt_lang]
|
|
|
|
| 66 |
|
| 67 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 68 |
file_name = file_name[:-9]
|
| 69 |
+
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
|
| 70 |
|
| 71 |
write_file(subtitle, f"{output_path}.srt")
|
| 72 |
|
modules/whisper_Inference.py
CHANGED
|
@@ -28,7 +28,7 @@ class WhisperInference(BaseInterface):
|
|
| 28 |
if model_size != self.current_model_size or self.model is None:
|
| 29 |
progress(0, desc="Initializing Model..")
|
| 30 |
self.current_model_size = model_size
|
| 31 |
-
self.model = whisper.load_model(name=model_size, download_root="models
|
| 32 |
|
| 33 |
if lang == "Automatic Detection":
|
| 34 |
lang = None
|
|
@@ -54,7 +54,7 @@ class WhisperInference(BaseInterface):
|
|
| 54 |
file_name = file_name[:-9]
|
| 55 |
file_name = safe_filename(file_name)
|
| 56 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 57 |
-
output_path = f"
|
| 58 |
|
| 59 |
if subformat == "SRT":
|
| 60 |
subtitle = get_srt(result["segments"])
|
|
@@ -89,7 +89,7 @@ class WhisperInference(BaseInterface):
|
|
| 89 |
if model_size != self.current_model_size or self.model is None:
|
| 90 |
progress(0, desc="Initializing Model..")
|
| 91 |
self.current_model_size = model_size
|
| 92 |
-
self.model = whisper.load_model(name=model_size, download_root="models
|
| 93 |
|
| 94 |
if lang == "Automatic Detection":
|
| 95 |
lang = None
|
|
@@ -110,7 +110,7 @@ class WhisperInference(BaseInterface):
|
|
| 110 |
|
| 111 |
file_name = safe_filename(yt.title)
|
| 112 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 113 |
-
output_path = f"
|
| 114 |
|
| 115 |
if subformat == "SRT":
|
| 116 |
subtitle = get_srt(result["segments"])
|
|
@@ -139,7 +139,7 @@ class WhisperInference(BaseInterface):
|
|
| 139 |
if model_size != self.current_model_size or self.model is None:
|
| 140 |
progress(0, desc="Initializing Model..")
|
| 141 |
self.current_model_size = model_size
|
| 142 |
-
self.model = whisper.load_model(name=model_size, download_root="models
|
| 143 |
|
| 144 |
if lang == "Automatic Detection":
|
| 145 |
lang = None
|
|
@@ -157,7 +157,7 @@ class WhisperInference(BaseInterface):
|
|
| 157 |
progress(1, desc="Completed!")
|
| 158 |
|
| 159 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 160 |
-
output_path = f"
|
| 161 |
|
| 162 |
if subformat == "SRT":
|
| 163 |
subtitle = get_srt(result["segments"])
|
|
|
|
| 28 |
if model_size != self.current_model_size or self.model is None:
|
| 29 |
progress(0, desc="Initializing Model..")
|
| 30 |
self.current_model_size = model_size
|
| 31 |
+
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 32 |
|
| 33 |
if lang == "Automatic Detection":
|
| 34 |
lang = None
|
|
|
|
| 54 |
file_name = file_name[:-9]
|
| 55 |
file_name = safe_filename(file_name)
|
| 56 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 57 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
| 58 |
|
| 59 |
if subformat == "SRT":
|
| 60 |
subtitle = get_srt(result["segments"])
|
|
|
|
| 89 |
if model_size != self.current_model_size or self.model is None:
|
| 90 |
progress(0, desc="Initializing Model..")
|
| 91 |
self.current_model_size = model_size
|
| 92 |
+
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 93 |
|
| 94 |
if lang == "Automatic Detection":
|
| 95 |
lang = None
|
|
|
|
| 110 |
|
| 111 |
file_name = safe_filename(yt.title)
|
| 112 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 113 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
| 114 |
|
| 115 |
if subformat == "SRT":
|
| 116 |
subtitle = get_srt(result["segments"])
|
|
|
|
| 139 |
if model_size != self.current_model_size or self.model is None:
|
| 140 |
progress(0, desc="Initializing Model..")
|
| 141 |
self.current_model_size = model_size
|
| 142 |
+
self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))
|
| 143 |
|
| 144 |
if lang == "Automatic Detection":
|
| 145 |
lang = None
|
|
|
|
| 157 |
progress(1, desc="Completed!")
|
| 158 |
|
| 159 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
| 160 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
| 161 |
|
| 162 |
if subformat == "SRT":
|
| 163 |
subtitle = get_srt(result["segments"])
|
modules/youtube_manager.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
from pytube import YouTube
|
|
|
|
| 2 |
|
| 3 |
def get_ytdata(link):
|
| 4 |
return YouTube(link)
|
|
@@ -8,4 +9,4 @@ def get_ytmetas(link):
|
|
| 8 |
return yt.thumbnail_url,yt.title,yt.description
|
| 9 |
|
| 10 |
def get_ytaudio(ytdata:YouTube):
|
| 11 |
-
return ytdata.streams.get_audio_only().download(filename="modules
|
|
|
|
| 1 |
from pytube import YouTube
|
| 2 |
+
import os
|
| 3 |
|
| 4 |
def get_ytdata(link):
|
| 5 |
return YouTube(link)
|
|
|
|
| 9 |
return yt.thumbnail_url,yt.title,yt.description
|
| 10 |
|
| 11 |
def get_ytaudio(ytdata:YouTube):
|
| 12 |
+
return ytdata.streams.get_audio_only().download(filename=os.path.join("modules", "yt_tmp.wav"))
|