Spaces:
Running
Running
jhj0517
commited on
Commit
Β·
b065a65
1
Parent(s):
1f8abba
refactoring to use data class
Browse files- app.py +29 -9
- modules/faster_whisper_inference.py +72 -170
app.py
CHANGED
|
@@ -8,6 +8,8 @@ from modules.nllb_inference import NLLBInference
|
|
| 8 |
from ui.htmls import *
|
| 9 |
from modules.youtube_manager import get_ytmetas
|
| 10 |
from modules.deepl_api import DeepLAPI
|
|
|
|
|
|
|
| 11 |
|
| 12 |
class App:
|
| 13 |
def __init__(self, args):
|
|
@@ -68,10 +70,16 @@ class App:
|
|
| 68 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4, interactive=False)
|
| 69 |
btn_openfolder = gr.Button('π', scale=1)
|
| 70 |
|
| 71 |
-
params = [input_file,
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 74 |
-
inputs=params +
|
| 75 |
outputs=[tb_indicator, files_subtitles])
|
| 76 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 77 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
@@ -108,10 +116,16 @@ class App:
|
|
| 108 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
|
| 109 |
btn_openfolder = gr.Button('π', scale=1)
|
| 110 |
|
| 111 |
-
params = [tb_youtubelink,
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 114 |
-
inputs=params +
|
| 115 |
outputs=[tb_indicator, files_subtitles])
|
| 116 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
| 117 |
outputs=[img_thumbnail, tb_title, tb_description])
|
|
@@ -141,10 +155,16 @@ class App:
|
|
| 141 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
|
| 142 |
btn_openfolder = gr.Button('π', scale=1)
|
| 143 |
|
| 144 |
-
params = [mic_input,
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 147 |
-
inputs=params +
|
| 148 |
outputs=[tb_indicator, files_subtitles])
|
| 149 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 150 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
|
| 8 |
from ui.htmls import *
|
| 9 |
from modules.youtube_manager import get_ytmetas
|
| 10 |
from modules.deepl_api import DeepLAPI
|
| 11 |
+
from modules.whisper_data_class import *
|
| 12 |
+
|
| 13 |
|
| 14 |
class App:
|
| 15 |
def __init__(self, args):
|
|
|
|
| 70 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4, interactive=False)
|
| 71 |
btn_openfolder = gr.Button('π', scale=1)
|
| 72 |
|
| 73 |
+
params = [input_file, dd_file_format, cb_timestamp]
|
| 74 |
+
whisper_params = WhisperGradioComponents(model_size=dd_model,
|
| 75 |
+
lang=dd_lang,
|
| 76 |
+
is_translate=cb_translate,
|
| 77 |
+
beam_size=nb_beam_size,
|
| 78 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 79 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 80 |
+
compute_type=dd_compute_type)
|
| 81 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 82 |
+
inputs=params + whisper_params.to_list(),
|
| 83 |
outputs=[tb_indicator, files_subtitles])
|
| 84 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 85 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
|
|
|
| 116 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
|
| 117 |
btn_openfolder = gr.Button('π', scale=1)
|
| 118 |
|
| 119 |
+
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
| 120 |
+
whisper_params = WhisperGradioComponents(model_size=dd_model,
|
| 121 |
+
lang=dd_lang,
|
| 122 |
+
is_translate=cb_translate,
|
| 123 |
+
beam_size=nb_beam_size,
|
| 124 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 125 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 126 |
+
compute_type=dd_compute_type)
|
| 127 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 128 |
+
inputs=params + whisper_params.to_list(),
|
| 129 |
outputs=[tb_indicator, files_subtitles])
|
| 130 |
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
|
| 131 |
outputs=[img_thumbnail, tb_title, tb_description])
|
|
|
|
| 155 |
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
|
| 156 |
btn_openfolder = gr.Button('π', scale=1)
|
| 157 |
|
| 158 |
+
params = [mic_input, dd_file_format]
|
| 159 |
+
whisper_params = WhisperGradioComponents(model_size=dd_model,
|
| 160 |
+
lang=dd_lang,
|
| 161 |
+
is_translate=cb_translate,
|
| 162 |
+
beam_size=nb_beam_size,
|
| 163 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 164 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 165 |
+
compute_type=dd_compute_type)
|
| 166 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 167 |
+
inputs=params + whisper_params.to_list(),
|
| 168 |
outputs=[tb_indicator, files_subtitles])
|
| 169 |
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
|
| 170 |
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
|
modules/faster_whisper_inference.py
CHANGED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
-
import tqdm
|
| 4 |
import time
|
| 5 |
import numpy as np
|
| 6 |
from typing import BinaryIO, Union, Tuple, List
|
| 7 |
-
from datetime import datetime
|
| 8 |
|
| 9 |
import faster_whisper
|
| 10 |
import ctranslate2
|
|
@@ -15,6 +14,7 @@ import gradio as gr
|
|
| 15 |
from .base_interface import BaseInterface
|
| 16 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 17 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
class FasterWhisperInference(BaseInterface):
|
|
@@ -26,22 +26,17 @@ class FasterWhisperInference(BaseInterface):
|
|
| 26 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 27 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
| 28 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
-
self.available_compute_types = ctranslate2.get_supported_compute_types(
|
|
|
|
| 30 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
| 31 |
self.default_beam_size = 1
|
| 32 |
|
| 33 |
def transcribe_file(self,
|
| 34 |
fileobjs: list,
|
| 35 |
-
model_size: str,
|
| 36 |
-
lang: str,
|
| 37 |
file_format: str,
|
| 38 |
-
istranslate: bool,
|
| 39 |
add_timestamp: bool,
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
no_speech_threshold: float,
|
| 43 |
-
compute_type: str,
|
| 44 |
-
progress=gr.Progress()
|
| 45 |
) -> list:
|
| 46 |
"""
|
| 47 |
Write subtitle file from Files
|
|
@@ -50,31 +45,14 @@ class FasterWhisperInference(BaseInterface):
|
|
| 50 |
----------
|
| 51 |
fileobjs: list
|
| 52 |
List of files to transcribe from gr.Files()
|
| 53 |
-
model_size: str
|
| 54 |
-
Whisper model size from gr.Dropdown()
|
| 55 |
-
lang: str
|
| 56 |
-
Source language of the file to transcribe from gr.Dropdown()
|
| 57 |
file_format: str
|
| 58 |
-
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 59 |
-
istranslate: bool
|
| 60 |
-
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 61 |
-
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 62 |
add_timestamp: bool
|
| 63 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 64 |
-
beam_size: int
|
| 65 |
-
Int value from gr.Number() that is used for decoding option.
|
| 66 |
-
log_prob_threshold: float
|
| 67 |
-
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 68 |
-
below this value, treat as failed.
|
| 69 |
-
no_speech_threshold: float
|
| 70 |
-
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 71 |
-
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 72 |
-
consider the segment as silent.
|
| 73 |
-
compute_type: str
|
| 74 |
-
compute type from gr.Dropdown().
|
| 75 |
-
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 76 |
progress: gr.Progress
|
| 77 |
Indicator to show progress directly in gradio.
|
|
|
|
|
|
|
| 78 |
|
| 79 |
Returns
|
| 80 |
----------
|
|
@@ -83,18 +61,12 @@ class FasterWhisperInference(BaseInterface):
|
|
| 83 |
Files to return to gr.Files()
|
| 84 |
"""
|
| 85 |
try:
|
| 86 |
-
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
| 87 |
-
|
| 88 |
files_info = {}
|
| 89 |
for fileobj in fileobjs:
|
| 90 |
transcribed_segments, time_for_task = self.transcribe(
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
beam_size=beam_size,
|
| 95 |
-
log_prob_threshold=log_prob_threshold,
|
| 96 |
-
no_speech_threshold=no_speech_threshold,
|
| 97 |
-
progress=progress
|
| 98 |
)
|
| 99 |
|
| 100 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.name))
|
|
@@ -105,7 +77,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 105 |
add_timestamp=add_timestamp,
|
| 106 |
file_format=file_format
|
| 107 |
)
|
| 108 |
-
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path":
|
| 109 |
|
| 110 |
total_result = ''
|
| 111 |
total_time = 0
|
|
@@ -115,10 +87,10 @@ class FasterWhisperInference(BaseInterface):
|
|
| 115 |
total_result += f'{info["subtitle"]}'
|
| 116 |
total_time += info["time_for_task"]
|
| 117 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
|
| 121 |
-
return [
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
print(f"Error transcribing file on line {e}")
|
|
@@ -128,50 +100,27 @@ class FasterWhisperInference(BaseInterface):
|
|
| 128 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
| 129 |
|
| 130 |
def transcribe_youtube(self,
|
| 131 |
-
|
| 132 |
-
model_size: str,
|
| 133 |
-
lang: str,
|
| 134 |
file_format: str,
|
| 135 |
-
istranslate: bool,
|
| 136 |
add_timestamp: bool,
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
no_speech_threshold: float,
|
| 140 |
-
compute_type: str,
|
| 141 |
-
progress=gr.Progress()
|
| 142 |
) -> list:
|
| 143 |
"""
|
| 144 |
Write subtitle file from Youtube
|
| 145 |
|
| 146 |
Parameters
|
| 147 |
----------
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
model_size: str
|
| 151 |
-
Whisper model size from gr.Dropdown()
|
| 152 |
-
lang: str
|
| 153 |
-
Source language of the file to transcribe from gr.Dropdown()
|
| 154 |
file_format: str
|
| 155 |
-
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 156 |
-
istranslate: bool
|
| 157 |
-
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 158 |
-
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 159 |
add_timestamp: bool
|
| 160 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
| 161 |
-
beam_size: int
|
| 162 |
-
Int value from gr.Number() that is used for decoding option.
|
| 163 |
-
log_prob_threshold: float
|
| 164 |
-
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 165 |
-
below this value, treat as failed.
|
| 166 |
-
no_speech_threshold: float
|
| 167 |
-
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 168 |
-
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 169 |
-
consider the segment as silent.
|
| 170 |
-
compute_type: str
|
| 171 |
-
compute type from gr.Dropdown().
|
| 172 |
-
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 173 |
progress: gr.Progress
|
| 174 |
Indicator to show progress directly in gradio.
|
|
|
|
|
|
|
| 175 |
|
| 176 |
Returns
|
| 177 |
----------
|
|
@@ -180,20 +129,14 @@ class FasterWhisperInference(BaseInterface):
|
|
| 180 |
Files to return to gr.Files()
|
| 181 |
"""
|
| 182 |
try:
|
| 183 |
-
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
| 184 |
-
|
| 185 |
progress(0, desc="Loading Audio from Youtube..")
|
| 186 |
-
yt = get_ytdata(
|
| 187 |
audio = get_ytaudio(yt)
|
| 188 |
|
| 189 |
transcribed_segments, time_for_task = self.transcribe(
|
| 190 |
-
audio
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
beam_size=beam_size,
|
| 194 |
-
log_prob_threshold=log_prob_threshold,
|
| 195 |
-
no_speech_threshold=no_speech_threshold,
|
| 196 |
-
progress=progress
|
| 197 |
)
|
| 198 |
|
| 199 |
progress(1, desc="Completed!")
|
|
@@ -214,7 +157,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 214 |
finally:
|
| 215 |
try:
|
| 216 |
if 'yt' not in locals():
|
| 217 |
-
yt = get_ytdata(
|
| 218 |
file_path = get_ytaudio(yt)
|
| 219 |
else:
|
| 220 |
file_path = get_ytaudio(yt)
|
|
@@ -225,47 +168,24 @@ class FasterWhisperInference(BaseInterface):
|
|
| 225 |
pass
|
| 226 |
|
| 227 |
def transcribe_mic(self,
|
| 228 |
-
|
| 229 |
-
model_size: str,
|
| 230 |
-
lang: str,
|
| 231 |
file_format: str,
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
log_prob_threshold: float,
|
| 235 |
-
no_speech_threshold: float,
|
| 236 |
-
compute_type: str,
|
| 237 |
-
progress=gr.Progress()
|
| 238 |
) -> list:
|
| 239 |
"""
|
| 240 |
Write subtitle file from microphone
|
| 241 |
|
| 242 |
Parameters
|
| 243 |
----------
|
| 244 |
-
|
| 245 |
Audio file path from gr.Microphone()
|
| 246 |
-
model_size: str
|
| 247 |
-
Whisper model size from gr.Dropdown()
|
| 248 |
-
lang: str
|
| 249 |
-
Source language of the file to transcribe from gr.Dropdown()
|
| 250 |
file_format: str
|
| 251 |
-
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 252 |
-
istranslate: bool
|
| 253 |
-
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 254 |
-
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 255 |
-
beam_size: int
|
| 256 |
-
Int value from gr.Number() that is used for decoding option.
|
| 257 |
-
log_prob_threshold: float
|
| 258 |
-
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 259 |
-
below this value, treat as failed.
|
| 260 |
-
no_speech_threshold: float
|
| 261 |
-
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 262 |
-
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 263 |
-
compute_type: str
|
| 264 |
-
compute type from gr.Dropdown().
|
| 265 |
-
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 266 |
-
consider the segment as silent.
|
| 267 |
progress: gr.Progress
|
| 268 |
Indicator to show progress directly in gradio.
|
|
|
|
|
|
|
| 269 |
|
| 270 |
Returns
|
| 271 |
----------
|
|
@@ -274,18 +194,11 @@ class FasterWhisperInference(BaseInterface):
|
|
| 274 |
Files to return to gr.Files()
|
| 275 |
"""
|
| 276 |
try:
|
| 277 |
-
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
| 278 |
-
|
| 279 |
progress(0, desc="Loading Audio..")
|
| 280 |
-
|
| 281 |
transcribed_segments, time_for_task = self.transcribe(
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
beam_size=beam_size,
|
| 286 |
-
log_prob_threshold=log_prob_threshold,
|
| 287 |
-
no_speech_threshold=no_speech_threshold,
|
| 288 |
-
progress=progress
|
| 289 |
)
|
| 290 |
progress(1, desc="Completed!")
|
| 291 |
|
|
@@ -302,16 +215,12 @@ class FasterWhisperInference(BaseInterface):
|
|
| 302 |
print(f"Error transcribing file on line {e}")
|
| 303 |
finally:
|
| 304 |
self.release_cuda_memory()
|
| 305 |
-
self.remove_input_files([
|
| 306 |
|
| 307 |
def transcribe(self,
|
| 308 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
beam_size: int,
|
| 312 |
-
log_prob_threshold: float,
|
| 313 |
-
no_speech_threshold: float,
|
| 314 |
-
progress: gr.Progress
|
| 315 |
) -> Tuple[List[dict], float]:
|
| 316 |
"""
|
| 317 |
transcribe method for faster-whisper.
|
|
@@ -320,22 +229,10 @@ class FasterWhisperInference(BaseInterface):
|
|
| 320 |
----------
|
| 321 |
audio: Union[str, BinaryIO, np.ndarray]
|
| 322 |
Audio path or file binary or Audio numpy array
|
| 323 |
-
lang: str
|
| 324 |
-
Source language of the file to transcribe from gr.Dropdown()
|
| 325 |
-
istranslate: bool
|
| 326 |
-
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 327 |
-
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 328 |
-
beam_size: int
|
| 329 |
-
Int value from gr.Number() that is used for decoding option.
|
| 330 |
-
log_prob_threshold: float
|
| 331 |
-
float value from gr.Number(). If the average log probability over sampled tokens is
|
| 332 |
-
below this value, treat as failed.
|
| 333 |
-
no_speech_threshold: float
|
| 334 |
-
float value from gr.Number(). If the no_speech probability is higher than this value AND
|
| 335 |
-
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 336 |
-
consider the segment as silent.
|
| 337 |
progress: gr.Progress
|
| 338 |
Indicator to show progress directly in gradio.
|
|
|
|
|
|
|
| 339 |
|
| 340 |
Returns
|
| 341 |
----------
|
|
@@ -346,18 +243,24 @@ class FasterWhisperInference(BaseInterface):
|
|
| 346 |
"""
|
| 347 |
start_time = time.time()
|
| 348 |
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
lang = None
|
| 351 |
else:
|
| 352 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
| 353 |
-
lang = language_code_dict[lang]
|
|
|
|
| 354 |
segments, info = self.model.transcribe(
|
| 355 |
audio=audio,
|
| 356 |
language=lang,
|
| 357 |
-
task="translate" if
|
| 358 |
-
beam_size=beam_size,
|
| 359 |
-
log_prob_threshold=log_prob_threshold,
|
| 360 |
-
no_speech_threshold=no_speech_threshold,
|
| 361 |
)
|
| 362 |
progress(0, desc="Loading audio..")
|
| 363 |
|
|
@@ -373,24 +276,23 @@ class FasterWhisperInference(BaseInterface):
|
|
| 373 |
elapsed_time = time.time() - start_time
|
| 374 |
return segments_result, elapsed_time
|
| 375 |
|
| 376 |
-
def
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
"""
|
| 382 |
-
|
| 383 |
"""
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
self.
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
)
|
| 394 |
|
| 395 |
@staticmethod
|
| 396 |
def generate_and_write_file(file_name: str,
|
|
|
|
| 1 |
import os
|
| 2 |
|
|
|
|
| 3 |
import time
|
| 4 |
import numpy as np
|
| 5 |
from typing import BinaryIO, Union, Tuple, List
|
| 6 |
+
from datetime import datetime
|
| 7 |
|
| 8 |
import faster_whisper
|
| 9 |
import ctranslate2
|
|
|
|
| 14 |
from .base_interface import BaseInterface
|
| 15 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 16 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 17 |
+
from modules.whisper_data_class import *
|
| 18 |
|
| 19 |
|
| 20 |
class FasterWhisperInference(BaseInterface):
|
|
|
|
| 26 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 27 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
| 28 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
self.available_compute_types = ctranslate2.get_supported_compute_types(
|
| 30 |
+
"cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")
|
| 31 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
| 32 |
self.default_beam_size = 1
|
| 33 |
|
| 34 |
def transcribe_file(self,
|
| 35 |
fileobjs: list,
|
|
|
|
|
|
|
| 36 |
file_format: str,
|
|
|
|
| 37 |
add_timestamp: bool,
|
| 38 |
+
progress=gr.Progress(),
|
| 39 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
| 40 |
) -> list:
|
| 41 |
"""
|
| 42 |
Write subtitle file from Files
|
|
|
|
| 45 |
----------
|
| 46 |
fileobjs: list
|
| 47 |
List of files to transcribe from gr.Files()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
file_format: str
|
| 49 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
|
|
|
|
|
|
|
|
| 50 |
add_timestamp: bool
|
| 51 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
progress: gr.Progress
|
| 53 |
Indicator to show progress directly in gradio.
|
| 54 |
+
*whisper_params: tuple
|
| 55 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
| 56 |
|
| 57 |
Returns
|
| 58 |
----------
|
|
|
|
| 61 |
Files to return to gr.Files()
|
| 62 |
"""
|
| 63 |
try:
|
|
|
|
|
|
|
| 64 |
files_info = {}
|
| 65 |
for fileobj in fileobjs:
|
| 66 |
transcribed_segments, time_for_task = self.transcribe(
|
| 67 |
+
fileobj.name,
|
| 68 |
+
progress,
|
| 69 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
|
| 72 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.name))
|
|
|
|
| 77 |
add_timestamp=add_timestamp,
|
| 78 |
file_format=file_format
|
| 79 |
)
|
| 80 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path}
|
| 81 |
|
| 82 |
total_result = ''
|
| 83 |
total_time = 0
|
|
|
|
| 87 |
total_result += f'{info["subtitle"]}'
|
| 88 |
total_time += info["time_for_task"]
|
| 89 |
|
| 90 |
+
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
| 91 |
+
result_file_path = [info['path'] for info in files_info.values()]
|
| 92 |
|
| 93 |
+
return [result_str, result_file_path]
|
| 94 |
|
| 95 |
except Exception as e:
|
| 96 |
print(f"Error transcribing file on line {e}")
|
|
|
|
| 100 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
| 101 |
|
| 102 |
def transcribe_youtube(self,
|
| 103 |
+
youtube_link: str,
|
|
|
|
|
|
|
| 104 |
file_format: str,
|
|
|
|
| 105 |
add_timestamp: bool,
|
| 106 |
+
progress=gr.Progress(),
|
| 107 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
| 108 |
) -> list:
|
| 109 |
"""
|
| 110 |
Write subtitle file from Youtube
|
| 111 |
|
| 112 |
Parameters
|
| 113 |
----------
|
| 114 |
+
youtube_link: str
|
| 115 |
+
URL of the Youtube video to transcribe from gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
file_format: str
|
| 117 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
|
|
|
|
|
|
|
|
| 118 |
add_timestamp: bool
|
| 119 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
progress: gr.Progress
|
| 121 |
Indicator to show progress directly in gradio.
|
| 122 |
+
*whisper_params: tuple
|
| 123 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
| 124 |
|
| 125 |
Returns
|
| 126 |
----------
|
|
|
|
| 129 |
Files to return to gr.Files()
|
| 130 |
"""
|
| 131 |
try:
|
|
|
|
|
|
|
| 132 |
progress(0, desc="Loading Audio from Youtube..")
|
| 133 |
+
yt = get_ytdata(youtube_link)
|
| 134 |
audio = get_ytaudio(yt)
|
| 135 |
|
| 136 |
transcribed_segments, time_for_task = self.transcribe(
|
| 137 |
+
audio,
|
| 138 |
+
progress,
|
| 139 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
progress(1, desc="Completed!")
|
|
|
|
| 157 |
finally:
|
| 158 |
try:
|
| 159 |
if 'yt' not in locals():
|
| 160 |
+
yt = get_ytdata(youtube_link)
|
| 161 |
file_path = get_ytaudio(yt)
|
| 162 |
else:
|
| 163 |
file_path = get_ytaudio(yt)
|
|
|
|
| 168 |
pass
|
| 169 |
|
| 170 |
def transcribe_mic(self,
|
| 171 |
+
mic_audio: str,
|
|
|
|
|
|
|
| 172 |
file_format: str,
|
| 173 |
+
progress=gr.Progress(),
|
| 174 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
) -> list:
|
| 176 |
"""
|
| 177 |
Write subtitle file from microphone
|
| 178 |
|
| 179 |
Parameters
|
| 180 |
----------
|
| 181 |
+
mic_audio: str
|
| 182 |
Audio file path from gr.Microphone()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
file_format: str
|
| 184 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
progress: gr.Progress
|
| 186 |
Indicator to show progress directly in gradio.
|
| 187 |
+
*whisper_params: tuple
|
| 188 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
| 189 |
|
| 190 |
Returns
|
| 191 |
----------
|
|
|
|
| 194 |
Files to return to gr.Files()
|
| 195 |
"""
|
| 196 |
try:
|
|
|
|
|
|
|
| 197 |
progress(0, desc="Loading Audio..")
|
|
|
|
| 198 |
transcribed_segments, time_for_task = self.transcribe(
|
| 199 |
+
mic_audio,
|
| 200 |
+
progress,
|
| 201 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
)
|
| 203 |
progress(1, desc="Completed!")
|
| 204 |
|
|
|
|
| 215 |
print(f"Error transcribing file on line {e}")
|
| 216 |
finally:
|
| 217 |
self.release_cuda_memory()
|
| 218 |
+
self.remove_input_files([mic_audio])
|
| 219 |
|
| 220 |
def transcribe(self,
|
| 221 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 222 |
+
progress: gr.Progress,
|
| 223 |
+
*whisper_params,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
) -> Tuple[List[dict], float]:
|
| 225 |
"""
|
| 226 |
transcribe method for faster-whisper.
|
|
|
|
| 229 |
----------
|
| 230 |
audio: Union[str, BinaryIO, np.ndarray]
|
| 231 |
Audio path or file binary or Audio numpy array
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
progress: gr.Progress
|
| 233 |
Indicator to show progress directly in gradio.
|
| 234 |
+
*whisper_params: tuple
|
| 235 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
| 236 |
|
| 237 |
Returns
|
| 238 |
----------
|
|
|
|
| 243 |
"""
|
| 244 |
start_time = time.time()
|
| 245 |
|
| 246 |
+
params = WhisperGradioComponents.to_values(*whisper_params)
|
| 247 |
+
|
| 248 |
+
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 249 |
+
self.update_model(params.model_size, params.compute_type, progress)
|
| 250 |
+
|
| 251 |
+
if params.lang == "Automatic Detection":
|
| 252 |
lang = None
|
| 253 |
else:
|
| 254 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
| 255 |
+
lang = language_code_dict[params.lang]
|
| 256 |
+
|
| 257 |
segments, info = self.model.transcribe(
|
| 258 |
audio=audio,
|
| 259 |
language=lang,
|
| 260 |
+
task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
|
| 261 |
+
beam_size=params.beam_size,
|
| 262 |
+
log_prob_threshold=params.log_prob_threshold,
|
| 263 |
+
no_speech_threshold=params.no_speech_threshold,
|
| 264 |
)
|
| 265 |
progress(0, desc="Loading audio..")
|
| 266 |
|
|
|
|
| 276 |
elapsed_time = time.time() - start_time
|
| 277 |
return segments_result, elapsed_time
|
| 278 |
|
| 279 |
+
def update_model(self,
|
| 280 |
+
model_size: str,
|
| 281 |
+
compute_type: str,
|
| 282 |
+
progress: gr.Progress
|
| 283 |
+
):
|
| 284 |
"""
|
| 285 |
+
update current model setting
|
| 286 |
"""
|
| 287 |
+
progress(0, desc="Initializing Model..")
|
| 288 |
+
self.current_model_size = model_size
|
| 289 |
+
self.current_compute_type = compute_type
|
| 290 |
+
self.model = faster_whisper.WhisperModel(
|
| 291 |
+
device=self.device,
|
| 292 |
+
model_size_or_path=model_size,
|
| 293 |
+
download_root=os.path.join("models", "Whisper", "faster-whisper"),
|
| 294 |
+
compute_type=self.current_compute_type
|
| 295 |
+
)
|
|
|
|
| 296 |
|
| 297 |
@staticmethod
|
| 298 |
def generate_and_write_file(file_name: str,
|