Spaces:
Running
Running
jhj0517
commited on
Commit
·
f7c5695
1
Parent(s):
0c00704
Revert "add `silence_non_speech` parameter"
Browse filesThis reverts commit b678293544dbce3ad7b234752336c86154dfb05a.
- modules/vad/silero_vad.py +10 -53
- modules/whisper/whisper_base.py +0 -1
modules/vad/silero_vad.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 2 |
import numpy as np
|
| 3 |
-
from typing import BinaryIO, Union, List, Optional
|
| 4 |
import warnings
|
| 5 |
import faster_whisper
|
| 6 |
import gradio as gr
|
|
@@ -15,7 +15,6 @@ class SileroVAD:
|
|
| 15 |
def run(self,
|
| 16 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 17 |
vad_parameters: VadOptions,
|
| 18 |
-
silence_non_speech: bool = True,
|
| 19 |
progress: gr.Progress = gr.Progress()):
|
| 20 |
"""
|
| 21 |
Run VAD
|
|
@@ -26,8 +25,6 @@ class SileroVAD:
|
|
| 26 |
Audio path or file binary or Audio numpy array
|
| 27 |
vad_parameters:
|
| 28 |
Options for VAD processing.
|
| 29 |
-
silence_non_speech: bool
|
| 30 |
-
If True, non-speech parts will be silenced instead of being removed.
|
| 31 |
progress: gr.Progress
|
| 32 |
Indicator to show progress directly in gradio.
|
| 33 |
|
|
@@ -43,32 +40,19 @@ class SileroVAD:
|
|
| 43 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
| 44 |
|
| 45 |
duration = audio.shape[0] / sampling_rate
|
|
|
|
| 46 |
|
| 47 |
if vad_parameters is None:
|
| 48 |
vad_parameters = VadOptions()
|
| 49 |
elif isinstance(vad_parameters, dict):
|
| 50 |
vad_parameters = VadOptions(**vad_parameters)
|
| 51 |
-
|
| 52 |
speech_chunks = self.get_speech_timestamps(
|
| 53 |
audio=audio,
|
| 54 |
vad_options=vad_parameters,
|
| 55 |
progress=progress
|
| 56 |
)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
audio=audio,
|
| 60 |
-
chunks=speech_chunks,
|
| 61 |
-
silence_non_speech=silence_non_speech
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
if silence_non_speech:
|
| 65 |
-
print(
|
| 66 |
-
f"VAD filter silenced {self.format_timestamp(duration_diff)} of audio.",
|
| 67 |
-
)
|
| 68 |
-
else:
|
| 69 |
-
print(
|
| 70 |
-
f"VAD filter removed {self.format_timestamp(duration_diff)} of audio",
|
| 71 |
-
)
|
| 72 |
|
| 73 |
return audio
|
| 74 |
|
|
@@ -224,41 +208,13 @@ class SileroVAD:
|
|
| 224 |
def update_model(self):
|
| 225 |
self.model = get_vad_model()
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
audio
|
| 230 |
-
chunks: List[dict],
|
| 231 |
-
silence_non_speech: bool = True,
|
| 232 |
-
) -> Tuple[np.ndarray, float]:
|
| 233 |
-
"""Collects and concatenate audio chunks.
|
| 234 |
-
|
| 235 |
-
Args:
|
| 236 |
-
audio: One dimensional float array.
|
| 237 |
-
chunks: List of dictionaries containing start and end samples of speech chunks
|
| 238 |
-
silence_non_speech: If True, non-speech parts will be silenced instead of being removed.
|
| 239 |
-
|
| 240 |
-
Returns:
|
| 241 |
-
Tuple containing:
|
| 242 |
-
- Processed audio as a numpy array
|
| 243 |
-
- Duration of changed (silenced or removed) audio in seconds
|
| 244 |
-
"""
|
| 245 |
if not chunks:
|
| 246 |
-
return np.array([], dtype=np.float32)
|
| 247 |
-
|
| 248 |
-
total_samples = audio.shape[0]
|
| 249 |
-
speech_samples = sum(chunk["end"] - chunk["start"] for chunk in chunks)
|
| 250 |
-
changed_samples = total_samples - speech_samples
|
| 251 |
-
duration_difference = changed_samples / self.sampling_rate
|
| 252 |
|
| 253 |
-
|
| 254 |
-
processed_audio = np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
| 255 |
-
else:
|
| 256 |
-
processed_audio = np.zeros_like(audio)
|
| 257 |
-
for chunk in chunks:
|
| 258 |
-
start, end = chunk['start'], chunk['end']
|
| 259 |
-
processed_audio[start:end] = audio[start:end]
|
| 260 |
-
|
| 261 |
-
return processed_audio, duration_difference
|
| 262 |
|
| 263 |
@staticmethod
|
| 264 |
def format_timestamp(
|
|
@@ -282,3 +238,4 @@ class SileroVAD:
|
|
| 282 |
return (
|
| 283 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 284 |
)
|
|
|
|
|
|
| 1 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 2 |
import numpy as np
|
| 3 |
+
from typing import BinaryIO, Union, List, Optional
|
| 4 |
import warnings
|
| 5 |
import faster_whisper
|
| 6 |
import gradio as gr
|
|
|
|
| 15 |
def run(self,
|
| 16 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 17 |
vad_parameters: VadOptions,
|
|
|
|
| 18 |
progress: gr.Progress = gr.Progress()):
|
| 19 |
"""
|
| 20 |
Run VAD
|
|
|
|
| 25 |
Audio path or file binary or Audio numpy array
|
| 26 |
vad_parameters:
|
| 27 |
Options for VAD processing.
|
|
|
|
|
|
|
| 28 |
progress: gr.Progress
|
| 29 |
Indicator to show progress directly in gradio.
|
| 30 |
|
|
|
|
| 40 |
audio = faster_whisper.decode_audio(audio, sampling_rate=sampling_rate)
|
| 41 |
|
| 42 |
duration = audio.shape[0] / sampling_rate
|
| 43 |
+
duration_after_vad = duration
|
| 44 |
|
| 45 |
if vad_parameters is None:
|
| 46 |
vad_parameters = VadOptions()
|
| 47 |
elif isinstance(vad_parameters, dict):
|
| 48 |
vad_parameters = VadOptions(**vad_parameters)
|
|
|
|
| 49 |
speech_chunks = self.get_speech_timestamps(
|
| 50 |
audio=audio,
|
| 51 |
vad_options=vad_parameters,
|
| 52 |
progress=progress
|
| 53 |
)
|
| 54 |
+
audio = self.collect_chunks(audio, speech_chunks)
|
| 55 |
+
duration_after_vad = audio.shape[0] / sampling_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
return audio
|
| 58 |
|
|
|
|
| 208 |
def update_model(self):
|
| 209 |
self.model = get_vad_model()
|
| 210 |
|
| 211 |
+
@staticmethod
|
| 212 |
+
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
| 213 |
+
"""Collects and concatenates audio chunks."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
if not chunks:
|
| 215 |
+
return np.array([], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
return np.concatenate([audio[chunk["start"]: chunk["end"]] for chunk in chunks])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
@staticmethod
|
| 220 |
def format_timestamp(
|
|
|
|
| 238 |
return (
|
| 239 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 240 |
)
|
| 241 |
+
|
modules/whisper/whisper_base.py
CHANGED
|
@@ -96,7 +96,6 @@ class WhisperBase(ABC):
|
|
| 96 |
audio = self.vad.run(
|
| 97 |
audio=audio,
|
| 98 |
vad_parameters=vad_options,
|
| 99 |
-
silence_non_speech=True,
|
| 100 |
progress=progress
|
| 101 |
)
|
| 102 |
|
|
|
|
| 96 |
audio = self.vad.run(
|
| 97 |
audio=audio,
|
| 98 |
vad_parameters=vad_options,
|
|
|
|
| 99 |
progress=progress
|
| 100 |
)
|
| 101 |
|