Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Wan 2.2
Browse files- app.py +214 -0
- optimization.py +114 -0
- optimization_utils.py +98 -0
- requirements.txt +10 -0
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,214 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # PyTorch 2.8 (temporary hack)
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            # Actual demo code
         | 
| 6 | 
            +
            import spaces
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
         | 
| 9 | 
            +
            from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
         | 
| 10 | 
            +
            from diffusers.utils.export_utils import export_to_video
         | 
| 11 | 
            +
            import gradio as gr
         | 
| 12 | 
            +
            import tempfile
         | 
| 13 | 
            +
            import numpy as np
         | 
| 14 | 
            +
            from PIL import Image
         | 
| 15 | 
            +
            import random
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from optimization import optimize_pipeline_
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            LANDSCAPE_WIDTH = 832
         | 
| 23 | 
            +
            LANDSCAPE_HEIGHT = 480
         | 
| 24 | 
            +
            MAX_SEED = np.iinfo(np.int32).max
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            FIXED_FPS = 24
         | 
| 27 | 
            +
            MIN_FRAMES_MODEL = 8
         | 
| 28 | 
            +
            MAX_FRAMES_MODEL = 81
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
         | 
| 31 | 
            +
            MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            transformer = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
         | 
| 35 | 
            +
                subfolder='transformer',
         | 
| 36 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 37 | 
            +
                device_map='cuda',
         | 
| 38 | 
            +
            )
         | 
| 39 | 
            +
            transformer_2 = WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
         | 
| 40 | 
            +
                subfolder='transformer_2',
         | 
| 41 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 42 | 
            +
                device_map='cuda',
         | 
| 43 | 
            +
            )
         | 
| 44 | 
            +
            pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
         | 
| 45 | 
            +
                transformer=transformer,
         | 
| 46 | 
            +
                transformer_2=transformer,
         | 
| 47 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 48 | 
            +
            ).to('cuda')
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
            optimize_pipeline_(pipe,
         | 
| 52 | 
            +
                image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
         | 
| 53 | 
            +
                prompt='prompt',
         | 
| 54 | 
            +
                height=LANDSCAPE_HEIGHT,
         | 
| 55 | 
            +
                width=LANDSCAPE_WIDTH,
         | 
| 56 | 
            +
                num_frames=MAX_FRAMES_MODEL,
         | 
| 57 | 
            +
            )
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
         | 
| 61 | 
            +
            default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走"
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            def resize_image(image: Image.Image) -> Image.Image:
         | 
| 65 | 
            +
                if image.height > image.width:
         | 
| 66 | 
            +
                    transposed = image.transpose(Image.Transpose.ROTATE_90)
         | 
| 67 | 
            +
                    resized = resize_image_landscape(transposed)
         | 
| 68 | 
            +
                    return resized.transpose(Image.Transpose.ROTATE_270)
         | 
| 69 | 
            +
                return resize_image_landscape(image)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            def resize_image_landscape(image: Image.Image) -> Image.Image:
         | 
| 73 | 
            +
                target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
         | 
| 74 | 
            +
                width, height = image.size
         | 
| 75 | 
            +
                in_aspect = width / height
         | 
| 76 | 
            +
                if in_aspect > target_aspect:
         | 
| 77 | 
            +
                    new_width = round(height * target_aspect)
         | 
| 78 | 
            +
                    left = (width - new_width) // 2
         | 
| 79 | 
            +
                    image = image.crop((left, 0, left + new_width, height))
         | 
| 80 | 
            +
                else:
         | 
| 81 | 
            +
                    new_height = round(width / target_aspect)
         | 
| 82 | 
            +
                    top = (height - new_height) // 2
         | 
| 83 | 
            +
                    image = image.crop((0, top, width, top + new_height))
         | 
| 84 | 
            +
                return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            def get_duration(
         | 
| 87 | 
            +
                input_image,
         | 
| 88 | 
            +
                prompt,
         | 
| 89 | 
            +
                negative_prompt,
         | 
| 90 | 
            +
                duration_seconds,
         | 
| 91 | 
            +
                guidance_scale,
         | 
| 92 | 
            +
                steps,
         | 
| 93 | 
            +
                seed,
         | 
| 94 | 
            +
                randomize_seed,
         | 
| 95 | 
            +
                progress,
         | 
| 96 | 
            +
            ):
         | 
| 97 | 
            +
                return steps * 15
         | 
| 98 | 
            +
             | 
| 99 | 
            +
            @spaces.GPU(duration=get_duration)
         | 
| 100 | 
            +
            def generate_video(
         | 
| 101 | 
            +
                input_image,
         | 
| 102 | 
            +
                prompt,
         | 
| 103 | 
            +
                negative_prompt=default_negative_prompt,
         | 
| 104 | 
            +
                duration_seconds = MAX_DURATION,
         | 
| 105 | 
            +
                guidance_scale = 1,
         | 
| 106 | 
            +
                steps = 4,
         | 
| 107 | 
            +
                seed = 42,
         | 
| 108 | 
            +
                randomize_seed = False,
         | 
| 109 | 
            +
                progress=gr.Progress(track_tqdm=True),
         | 
| 110 | 
            +
            ):
         | 
| 111 | 
            +
                """
         | 
| 112 | 
            +
                Generate a video from an input image using the Wan 2.1 I2V model with CausVid LoRA.
         | 
| 113 | 
            +
                
         | 
| 114 | 
            +
                This function takes an input image and generates a video animation based on the provided
         | 
| 115 | 
            +
                prompt and parameters. It uses the Wan 2.1 14B Image-to-Video model with CausVid LoRA
         | 
| 116 | 
            +
                for fast generation in 4-8 steps.
         | 
| 117 | 
            +
                
         | 
| 118 | 
            +
                Args:
         | 
| 119 | 
            +
                    input_image (PIL.Image): The input image to animate. Will be resized to target dimensions.
         | 
| 120 | 
            +
                    prompt (str): Text prompt describing the desired animation or motion.
         | 
| 121 | 
            +
                    negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
         | 
| 122 | 
            +
                        Defaults to default_negative_prompt (contains unwanted visual artifacts).
         | 
| 123 | 
            +
                    duration_seconds (float, optional): Duration of the generated video in seconds.
         | 
| 124 | 
            +
                        Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
         | 
| 125 | 
            +
                    guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
         | 
| 126 | 
            +
                        Defaults to 1.0. Range: 0.0-20.0.
         | 
| 127 | 
            +
                    steps (int, optional): Number of inference steps. More steps = higher quality but slower.
         | 
| 128 | 
            +
                        Defaults to 4. Range: 1-30.
         | 
| 129 | 
            +
                    seed (int, optional): Random seed for reproducible results. Defaults to 42.
         | 
| 130 | 
            +
                        Range: 0 to MAX_SEED (2147483647).
         | 
| 131 | 
            +
                    randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
         | 
| 132 | 
            +
                        Defaults to False.
         | 
| 133 | 
            +
                    progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
         | 
| 134 | 
            +
                
         | 
| 135 | 
            +
                Returns:
         | 
| 136 | 
            +
                    tuple: A tuple containing:
         | 
| 137 | 
            +
                        - video_path (str): Path to the generated video file (.mp4)
         | 
| 138 | 
            +
                        - current_seed (int): The seed used for generation (useful when randomize_seed=True)
         | 
| 139 | 
            +
                
         | 
| 140 | 
            +
                Raises:
         | 
| 141 | 
            +
                    gr.Error: If input_image is None (no image uploaded).
         | 
| 142 | 
            +
                
         | 
| 143 | 
            +
                Note:
         | 
| 144 | 
            +
                    - The function automatically resizes the input image to the target dimensions
         | 
| 145 | 
            +
                    - Frame count is calculated as duration_seconds * FIXED_FPS (24)
         | 
| 146 | 
            +
                    - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
         | 
| 147 | 
            +
                    - The function uses GPU acceleration via the @spaces.GPU decorator
         | 
| 148 | 
            +
                    - Generation time varies based on steps and duration (see get_duration function)
         | 
| 149 | 
            +
                """
         | 
| 150 | 
            +
                if input_image is None:
         | 
| 151 | 
            +
                    raise gr.Error("Please upload an input image.")
         | 
| 152 | 
            +
                
         | 
| 153 | 
            +
                num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
         | 
| 154 | 
            +
                current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
         | 
| 155 | 
            +
                resized_image = resize_image(input_image)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                output_frames_list = pipe(
         | 
| 158 | 
            +
                    image=resized_image,
         | 
| 159 | 
            +
                    prompt=prompt,
         | 
| 160 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 161 | 
            +
                    height=resized_image.height,
         | 
| 162 | 
            +
                    width=resized_image.width,
         | 
| 163 | 
            +
                    num_frames=num_frames,
         | 
| 164 | 
            +
                    guidance_scale=float(guidance_scale),
         | 
| 165 | 
            +
                    num_inference_steps=int(steps),
         | 
| 166 | 
            +
                    generator=torch.Generator(device="cuda").manual_seed(current_seed),
         | 
| 167 | 
            +
                ).frames[0]
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
         | 
| 170 | 
            +
                    video_path = tmpfile.name
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                return video_path, current_seed
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            with gr.Blocks() as demo:
         | 
| 177 | 
            +
                gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
         | 
| 178 | 
            +
                gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
         | 
| 179 | 
            +
                with gr.Row():
         | 
| 180 | 
            +
                    with gr.Column():
         | 
| 181 | 
            +
                        input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
         | 
| 182 | 
            +
                        prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
         | 
| 183 | 
            +
                        duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=MAX_DURATION, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
         | 
| 184 | 
            +
                        
         | 
| 185 | 
            +
                        with gr.Accordion("Advanced Settings", open=False):
         | 
| 186 | 
            +
                            negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
         | 
| 187 | 
            +
                            seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
         | 
| 188 | 
            +
                            randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
         | 
| 189 | 
            +
                            steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
         | 
| 190 | 
            +
                            guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                        generate_button = gr.Button("Generate Video", variant="primary")
         | 
| 193 | 
            +
                    with gr.Column():
         | 
| 194 | 
            +
                        video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
         | 
| 195 | 
            +
                
         | 
| 196 | 
            +
                ui_inputs = [
         | 
| 197 | 
            +
                    input_image_component, prompt_input,
         | 
| 198 | 
            +
                    negative_prompt_input, duration_seconds_input,
         | 
| 199 | 
            +
                    guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
         | 
| 200 | 
            +
                ]
         | 
| 201 | 
            +
                generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                gr.Examples(
         | 
| 204 | 
            +
                    examples=[ 
         | 
| 205 | 
            +
                        [
         | 
| 206 | 
            +
                            "wan_i2v_input.JPG",
         | 
| 207 | 
            +
                            "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
         | 
| 208 | 
            +
                        ],
         | 
| 209 | 
            +
                    ],
         | 
| 210 | 
            +
                    inputs=[input_image_component, prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
         | 
| 211 | 
            +
                )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            if __name__ == "__main__":
         | 
| 214 | 
            +
                demo.queue().launch(mcp_server=True)
         | 
    	
        optimization.py
    ADDED
    
    | @@ -0,0 +1,114 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from typing import Any
         | 
| 5 | 
            +
            from typing import Callable
         | 
| 6 | 
            +
            from typing import ParamSpec
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import spaces
         | 
| 9 | 
            +
            import torch
         | 
| 10 | 
            +
            from torch.utils._pytree import tree_map_only
         | 
| 11 | 
            +
            from torchao.quantization import quantize_
         | 
| 12 | 
            +
            from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from optimization_utils import capture_component_call
         | 
| 15 | 
            +
            from optimization_utils import aoti_compile
         | 
| 16 | 
            +
            from optimization_utils import ZeroGPUCompiledModel
         | 
| 17 | 
            +
             | 
| 18 | 
            +
             | 
| 19 | 
            +
            P = ParamSpec('P')
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
            TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            TRANSFORMER_DYNAMIC_SHAPES = {
         | 
| 25 | 
            +
                'hidden_states': {
         | 
| 26 | 
            +
                    2: TRANSFORMER_NUM_FRAMES_DIM,
         | 
| 27 | 
            +
                },
         | 
| 28 | 
            +
            }
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            INDUCTOR_CONFIGS = {
         | 
| 31 | 
            +
                'conv_1x1_as_mm': True,
         | 
| 32 | 
            +
                'epilogue_fusion': False,
         | 
| 33 | 
            +
                'coordinate_descent_tuning': True,
         | 
| 34 | 
            +
                'coordinate_descent_check_all_directions': True,
         | 
| 35 | 
            +
                'max_autotune': True,
         | 
| 36 | 
            +
                'triton.cudagraphs': True,
         | 
| 37 | 
            +
            }
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                @spaces.GPU(duration=1500)
         | 
| 43 | 
            +
                def compile_transformer():
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    with capture_component_call(pipeline, 'transformer') as call:
         | 
| 46 | 
            +
                        pipeline(*args, **kwargs)
         | 
| 47 | 
            +
                    
         | 
| 48 | 
            +
                    dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
         | 
| 49 | 
            +
                    dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
         | 
| 52 | 
            +
                    
         | 
| 53 | 
            +
                    hidden_states: torch.Tensor = call.kwargs['hidden_states']
         | 
| 54 | 
            +
                    hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
         | 
| 55 | 
            +
                    if hidden_states.shape[-1] > hidden_states.shape[-2]:
         | 
| 56 | 
            +
                        hidden_states_landscape = hidden_states
         | 
| 57 | 
            +
                        hidden_states_portrait = hidden_states_transposed
         | 
| 58 | 
            +
                    else:
         | 
| 59 | 
            +
                        hidden_states_landscape = hidden_states_transposed
         | 
| 60 | 
            +
                        hidden_states_portrait = hidden_states
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    exported_landscape_1 = torch.export.export(
         | 
| 63 | 
            +
                        mod=pipeline.transformer,
         | 
| 64 | 
            +
                        args=call.args,
         | 
| 65 | 
            +
                        kwargs=call.kwargs | {'hidden_states': hidden_states_landscape},
         | 
| 66 | 
            +
                        dynamic_shapes=dynamic_shapes,
         | 
| 67 | 
            +
                    )
         | 
| 68 | 
            +
                    
         | 
| 69 | 
            +
                    exported_portrait_2 = torch.export.export(
         | 
| 70 | 
            +
                        mod=pipeline.transformer_2,
         | 
| 71 | 
            +
                        args=call.args,
         | 
| 72 | 
            +
                        kwargs=call.kwargs | {'hidden_states': hidden_states_portrait},
         | 
| 73 | 
            +
                        dynamic_shapes=dynamic_shapes,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    compiled_landscape_1 = aoti_compile(exported_landscape_1, INDUCTOR_CONFIGS)
         | 
| 77 | 
            +
                    compiled_portrait_2 = aoti_compile(exported_portrait_2, INDUCTOR_CONFIGS)
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                    compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights)
         | 
| 80 | 
            +
                    compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    return (
         | 
| 83 | 
            +
                        compiled_landscape_1,
         | 
| 84 | 
            +
                        compiled_landscape_2,
         | 
| 85 | 
            +
                        compiled_portrait_1,
         | 
| 86 | 
            +
                        compiled_portrait_2,
         | 
| 87 | 
            +
                    )
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                cl1, cl2, cp1, cp2 = compile_transformer()
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def combined_transformer_1(*args, **kwargs):
         | 
| 92 | 
            +
                    hidden_states: torch.Tensor = kwargs['hidden_states']
         | 
| 93 | 
            +
                    if hidden_states.shape[-1] > hidden_states.shape[-2]:
         | 
| 94 | 
            +
                        return cl1(*args, **kwargs)
         | 
| 95 | 
            +
                    else:
         | 
| 96 | 
            +
                        return cp1(*args, **kwargs)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def combined_transformer_2(*args, **kwargs):
         | 
| 99 | 
            +
                    hidden_states: torch.Tensor = kwargs['hidden_states']
         | 
| 100 | 
            +
                    if hidden_states.shape[-1] > hidden_states.shape[-2]:
         | 
| 101 | 
            +
                        return cl2(*args, **kwargs)
         | 
| 102 | 
            +
                    else:
         | 
| 103 | 
            +
                        return cp2(*args, **kwargs)
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                transformer_config = pipeline.transformer.config
         | 
| 106 | 
            +
                transformer_dtype = pipeline.transformer.dtype
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                pipeline.transformer = combined_transformer_1
         | 
| 109 | 
            +
                pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
         | 
| 110 | 
            +
                pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                pipeline.transformer_2 = combined_transformer_2
         | 
| 113 | 
            +
                pipeline.transformer_2.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
         | 
| 114 | 
            +
                pipeline.transformer_2.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]
         | 
    	
        optimization_utils.py
    ADDED
    
    | @@ -0,0 +1,98 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            """
         | 
| 3 | 
            +
            import contextlib
         | 
| 4 | 
            +
            from contextvars import ContextVar
         | 
| 5 | 
            +
            from io import BytesIO
         | 
| 6 | 
            +
            from typing import Any
         | 
| 7 | 
            +
            from typing import cast
         | 
| 8 | 
            +
            from unittest.mock import patch
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            from torch._inductor.package.package import package_aoti
         | 
| 12 | 
            +
            from torch.export.pt2_archive._package import AOTICompiledModel
         | 
| 13 | 
            +
            from torch.export.pt2_archive._package_weights import Weights
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            INDUCTOR_CONFIGS_OVERRIDES = {
         | 
| 17 | 
            +
                'aot_inductor.package_constants_in_so': False,
         | 
| 18 | 
            +
                'aot_inductor.package_constants_on_disk': True,
         | 
| 19 | 
            +
                'aot_inductor.package': True,
         | 
| 20 | 
            +
            }
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            class ZeroGPUWeights:
         | 
| 24 | 
            +
                def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
         | 
| 25 | 
            +
                    if to_cuda:
         | 
| 26 | 
            +
                        self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
         | 
| 27 | 
            +
                    else:
         | 
| 28 | 
            +
                        self.constants_map = constants_map
         | 
| 29 | 
            +
                def __reduce__(self):
         | 
| 30 | 
            +
                    constants_map: dict[str, torch.Tensor] = {}
         | 
| 31 | 
            +
                    for name, tensor in self.constants_map.items():
         | 
| 32 | 
            +
                        tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
         | 
| 33 | 
            +
                        constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
         | 
| 34 | 
            +
                    return ZeroGPUWeights, (constants_map, True)
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            class ZeroGPUCompiledModel:
         | 
| 38 | 
            +
                def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
         | 
| 39 | 
            +
                    self.archive_file = archive_file
         | 
| 40 | 
            +
                    self.weights = weights
         | 
| 41 | 
            +
                    self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
         | 
| 42 | 
            +
                def __call__(self, *args, **kwargs):
         | 
| 43 | 
            +
                    if (compiled_model := self.compiled_model.get()) is None:
         | 
| 44 | 
            +
                        compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
         | 
| 45 | 
            +
                        compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
         | 
| 46 | 
            +
                        self.compiled_model.set(compiled_model)
         | 
| 47 | 
            +
                    return compiled_model(*args, **kwargs)
         | 
| 48 | 
            +
                def __reduce__(self):
         | 
| 49 | 
            +
                    return ZeroGPUCompiledModel, (self.archive_file, self.weights)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            def aoti_compile(
         | 
| 53 | 
            +
                exported_program: torch.export.ExportedProgram,
         | 
| 54 | 
            +
                inductor_configs: dict[str, Any] | None = None,
         | 
| 55 | 
            +
            ):
         | 
| 56 | 
            +
                inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
         | 
| 57 | 
            +
                gm = cast(torch.fx.GraphModule, exported_program.module())
         | 
| 58 | 
            +
                assert exported_program.example_inputs is not None
         | 
| 59 | 
            +
                args, kwargs = exported_program.example_inputs
         | 
| 60 | 
            +
                artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
         | 
| 61 | 
            +
                archive_file = BytesIO()
         | 
| 62 | 
            +
                files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
         | 
| 63 | 
            +
                package_aoti(archive_file, files)
         | 
| 64 | 
            +
                weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
         | 
| 65 | 
            +
                zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
         | 
| 66 | 
            +
                return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
         | 
| 67 | 
            +
             | 
| 68 | 
            +
             | 
| 69 | 
            +
            @contextlib.contextmanager
         | 
| 70 | 
            +
            def capture_component_call(
         | 
| 71 | 
            +
                pipeline: Any,
         | 
| 72 | 
            +
                component_name: str,
         | 
| 73 | 
            +
                component_method='forward',
         | 
| 74 | 
            +
            ):
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                class CapturedCallException(Exception):
         | 
| 77 | 
            +
                    def __init__(self, *args, **kwargs):
         | 
| 78 | 
            +
                        super().__init__()
         | 
| 79 | 
            +
                        self.args = args
         | 
| 80 | 
            +
                        self.kwargs = kwargs
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                class CapturedCall:
         | 
| 83 | 
            +
                    def __init__(self):
         | 
| 84 | 
            +
                        self.args: tuple[Any, ...] = ()
         | 
| 85 | 
            +
                        self.kwargs: dict[str, Any] = {}
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                component = getattr(pipeline, component_name)
         | 
| 88 | 
            +
                captured_call = CapturedCall()
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def capture_call(*args, **kwargs):
         | 
| 91 | 
            +
                    raise CapturedCallException(*args, **kwargs)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                with patch.object(component, component_method, new=capture_call):
         | 
| 94 | 
            +
                    try:
         | 
| 95 | 
            +
                        yield captured_call
         | 
| 96 | 
            +
                    except CapturedCallException as e:
         | 
| 97 | 
            +
                        captured_call.args = e.args
         | 
| 98 | 
            +
                        captured_call.kwargs = e.kwargs
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,10 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            git+https://github.com/huggingface/diffusers.git@5512d70f7fd89f69511d9c23f1473a49f7901bee
         | 
| 2 | 
            +
            transformers
         | 
| 3 | 
            +
            accelerate
         | 
| 4 | 
            +
            safetensors
         | 
| 5 | 
            +
            sentencepiece
         | 
| 6 | 
            +
            peft
         | 
| 7 | 
            +
            ftfy
         | 
| 8 | 
            +
            imageio-ffmpeg
         | 
| 9 | 
            +
            opencv-python
         | 
| 10 | 
            +
            torchao==0.11.0
         | 
