Spaces:
Running
on
Zero
Running
on
Zero
upload img to s3
Browse files- app.py +41 -3
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -17,6 +17,8 @@ from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImagePro
|
|
| 17 |
from transformers import CLIPImageProcessor
|
| 18 |
from diffusers.utils import load_image
|
| 19 |
from gradio_imageslider import ImageSlider
|
|
|
|
|
|
|
| 20 |
|
| 21 |
device = "cuda"
|
| 22 |
base_model_id = "SG161222/RealVisXL_V4.0"
|
|
@@ -82,9 +84,25 @@ def get_depth_map(image):
|
|
| 82 |
return image
|
| 83 |
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
@spaces.GPU(enable_queue=True)
|
| 87 |
-
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed, progress=gr.Progress()):
|
| 88 |
|
| 89 |
if image_url:
|
| 90 |
orginal_image = load_image(image_url)
|
|
@@ -106,7 +124,14 @@ def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, contr
|
|
| 106 |
generator=generator,
|
| 107 |
image=depth_image
|
| 108 |
).images[0]
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
|
|
@@ -128,6 +153,14 @@ with gr.Blocks() as demo:
|
|
| 128 |
label="Negative prompt",
|
| 129 |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
| 130 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
with gr.Column():
|
| 132 |
result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
|
| 133 |
logs = gr.Textbox(label="logs")
|
|
@@ -140,7 +173,12 @@ with gr.Blocks() as demo:
|
|
| 140 |
num_steps,
|
| 141 |
guidance_scale,
|
| 142 |
control_strength,
|
| 143 |
-
seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
]
|
| 145 |
run_button.click(
|
| 146 |
fn=randomize_seed_fn,
|
|
|
|
| 17 |
from transformers import CLIPImageProcessor
|
| 18 |
from diffusers.utils import load_image
|
| 19 |
from gradio_imageslider import ImageSlider
|
| 20 |
+
import boto3
|
| 21 |
+
from io import BytesIO
|
| 22 |
|
| 23 |
device = "cuda"
|
| 24 |
base_model_id = "SG161222/RealVisXL_V4.0"
|
|
|
|
| 84 |
return image
|
| 85 |
|
| 86 |
|
| 87 |
+
def upload_to_s3(image, region, access_key, secret_key, bucket_name):
|
| 88 |
+
s3 = boto3.client(
|
| 89 |
+
's3',
|
| 90 |
+
region_name=region,
|
| 91 |
+
aws_access_key_id=access_key,
|
| 92 |
+
aws_secret_access_key=secret_key
|
| 93 |
+
)
|
| 94 |
+
image_key = f"generated_images/{random.randint(0, MAX_SEED)}.png"
|
| 95 |
+
buffer = BytesIO()
|
| 96 |
+
image.save(buffer, "PNG")
|
| 97 |
+
buffer.seek(0)
|
| 98 |
+
|
| 99 |
+
s3.upload_fileobj(buffer, bucket_name, image_key)
|
| 100 |
+
return image_key
|
| 101 |
+
|
| 102 |
+
|
| 103 |
|
| 104 |
@spaces.GPU(enable_queue=True)
|
| 105 |
+
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed, upload_to_s3, region, access_key, secret_key, progress=gr.Progress()):
|
| 106 |
|
| 107 |
if image_url:
|
| 108 |
orginal_image = load_image(image_url)
|
|
|
|
| 124 |
generator=generator,
|
| 125 |
image=depth_image
|
| 126 |
).images[0]
|
| 127 |
+
|
| 128 |
+
if upload_to_s3:
|
| 129 |
+
url = upload_to_s3(generated_image, region, access_key, secret_key, bucket)
|
| 130 |
+
result = {"status": "success", "url": url}
|
| 131 |
+
else:
|
| 132 |
+
result = {"status": "success", "message": "Image generated but not uploaded"}
|
| 133 |
+
|
| 134 |
+
return [[depth_image, generated_image], json.dumps(result)]
|
| 135 |
|
| 136 |
with gr.Blocks() as demo:
|
| 137 |
|
|
|
|
| 153 |
label="Negative prompt",
|
| 154 |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
|
| 155 |
)
|
| 156 |
+
|
| 157 |
+
upload_to_s3 = gr.Checkbox(label="Upload to S3", value=False)
|
| 158 |
+
region = gr.Textbox(label="S3 Region", placeholder="Enter S3 region here")
|
| 159 |
+
access_key = gr.Textbox(label="Access Key", placeholder="Enter S3 access key here")
|
| 160 |
+
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter S3 secret key here")
|
| 161 |
+
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter S3 bucket name here")
|
| 162 |
+
|
| 163 |
+
|
| 164 |
with gr.Column():
|
| 165 |
result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
|
| 166 |
logs = gr.Textbox(label="logs")
|
|
|
|
| 173 |
num_steps,
|
| 174 |
guidance_scale,
|
| 175 |
control_strength,
|
| 176 |
+
seed,
|
| 177 |
+
upload_to_s3,
|
| 178 |
+
region,
|
| 179 |
+
access_key,
|
| 180 |
+
secret_key,
|
| 181 |
+
bucket
|
| 182 |
]
|
| 183 |
run_button.click(
|
| 184 |
fn=randomize_seed_fn,
|
requirements.txt
CHANGED
|
@@ -9,4 +9,5 @@ requests
|
|
| 9 |
spaces
|
| 10 |
huggingface_hub
|
| 11 |
controlnet-aux
|
| 12 |
-
safetensors
|
|
|
|
|
|
| 9 |
spaces
|
| 10 |
huggingface_hub
|
| 11 |
controlnet-aux
|
| 12 |
+
safetensors
|
| 13 |
+
boto3
|