Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction") | |
| token_knowledge_classifier = pipeline(model="jjzha/jobbert_knowledge_extraction") | |
| examples = [ | |
| "Knowing Python is a plus.", | |
| ] | |
| def ner(text): | |
| output_skills = token_skill_classifier(text) | |
| for result in output_skills: | |
| if result.get("entity"): | |
| tag = result["entity"] | |
| result["entity"] = tag + "-skill" | |
| output_knowledge = token_knowledge_classifier(text) | |
| for result in output_knowledge: | |
| if result.get("entity"): | |
| tag = result["entity"] | |
| result["entity"] = tag + "-knowledge" | |
| output = output_skills + output_knowledge | |
| return {"text": text, "entities": output} | |
| demo = gr.Interface(fn=ner, | |
| inputs=gr.Textbox(placeholder="Enter sentence here..."), | |
| outputs=gr.HighlightedText(), | |
| examples=examples) | |
| demo.launch() | |