Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -2,8 +2,8 @@ import gradio as gr 
     | 
|
| 2 | 
         
             
            import spaces
         
     | 
| 3 | 
         
             
            from transformers import pipeline
         
     | 
| 4 | 
         | 
| 5 | 
         
            -
            token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction", aggregation_strategy="first" 
     | 
| 6 | 
         
            -
            token_knowledge_classifier = pipeline(model="jjzha/jobbert_knowledge_extraction", aggregation_strategy="first" 
     | 
| 7 | 
         | 
| 8 | 
         | 
| 9 | 
         
             
            examples = [
         
     | 
| 
         @@ -28,7 +28,6 @@ def aggregate_span(results): 
     | 
|
| 28 | 
         | 
| 29 | 
         
             
                return new_results
         
     | 
| 30 | 
         | 
| 31 | 
         
            -
            @spaces.GPU
         
     | 
| 32 | 
         
             
            def ner(text):
         
     | 
| 33 | 
         
             
                output_skills = token_skill_classifier(text)
         
     | 
| 34 | 
         
             
                for result in output_skills:
         
     | 
| 
         | 
|
| 2 | 
         
             
            import spaces
         
     | 
| 3 | 
         
             
            from transformers import pipeline
         
     | 
| 4 | 
         | 
| 5 | 
         
            +
            token_skill_classifier = pipeline(model="jjzha/jobbert_skill_extraction", aggregation_strategy="first")
         
     | 
| 6 | 
         
            +
            token_knowledge_classifier = pipeline(model="jjzha/jobbert_knowledge_extraction", aggregation_strategy="first")
         
     | 
| 7 | 
         | 
| 8 | 
         | 
| 9 | 
         
             
            examples = [
         
     | 
| 
         | 
|
| 28 | 
         | 
| 29 | 
         
             
                return new_results
         
     | 
| 30 | 
         | 
| 
         | 
|
| 31 | 
         
             
            def ner(text):
         
     | 
| 32 | 
         
             
                output_skills = token_skill_classifier(text)
         
     | 
| 33 | 
         
             
                for result in output_skills:
         
     |