Spaces:
Running
on
Zero
Running
on
Zero
File size: 69,459 Bytes
0ca05b5 4c5a78b 0ca05b5 4c5a78b 0ca05b5 2bbacf3 0ca05b5 2bbacf3 0ca05b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 |
import gc
import os
import shutil
import time
from datetime import datetime
import io
import sys
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from PIL import Image
from pillow_heif import register_heif_opener
register_heif_opener()
from src.utils.inference_utils import load_and_preprocess_images
from src.utils.geometry import (
depth_edge,
normals_edge
)
from src.utils.visual_util import (
convert_predictions_to_glb_scene,
segment_sky,
download_file_from_url
)
from src.utils.save_utils import save_camera_params, save_gs_ply, process_ply_to_splat, convert_gs_to_ply
from src.utils.render_utils import render_interpolated_video
import onnxruntime
# Initialize model - this will be done on GPU when needed
model = None
# Global variable to store current terminal output
current_terminal_output = ""
# Helper class to capture terminal output
class TeeOutput:
"""Capture output while still printing to console"""
def __init__(self, max_chars=10000):
self.terminal = sys.stdout
self.log = io.StringIO()
self.max_chars = max_chars # 限制最大字符数
def write(self, message):
global current_terminal_output
self.terminal.write(message)
self.log.write(message)
# 获取当前内容并限制长度
content = self.log.getvalue()
if len(content) > self.max_chars:
# 只保留最后 max_chars 个字符
content = "...(earlier output truncated)...\n" + content[-self.max_chars:]
self.log = io.StringIO()
self.log.write(content)
current_terminal_output = self.log.getvalue()
def flush(self):
self.terminal.flush()
def getvalue(self):
return self.log.getvalue()
def clear(self):
global current_terminal_output
self.log = io.StringIO()
current_terminal_output = ""
# -------------------------------------------------------------------------
# Model inference
# -------------------------------------------------------------------------
@spaces.GPU(duration=120)
def run_model(
target_dir,
confidence_percentile: float = 10,
edge_normal_threshold: float = 5.0,
edge_depth_threshold: float = 0.03,
apply_confidence_mask: bool = True,
apply_edge_mask: bool = True,
):
"""
Run the WorldMirror model on images in the 'target_dir/images' folder and return predictions.
"""
global model
import torch # Ensure torch is available in function scope
from src.models.models.worldmirror import WorldMirror
from src.models.utils.geometry import depth_to_world_coords_points
print(f"Processing images from {target_dir}")
# Device check
device = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device(device)
# Initialize model if not already done
if model is None:
model = WorldMirror.from_pretrained("tencent/HunyuanWorld-Mirror").to(device)
else:
model.to(device)
model.eval()
# Load images using WorldMirror's load_images function
print("Loading images...")
image_folder_path = os.path.join(target_dir, "images")
image_file_paths = [os.path.join(image_folder_path, path) for path in os.listdir(image_folder_path)]
img = load_and_preprocess_images(image_file_paths).to(device)
print(f"Loaded {img.shape[1]} images")
if img.shape[1] == 0:
raise ValueError("No images found. Check your upload.")
# Run model inference
print("Running inference...")
inputs = {}
inputs['img'] = img
use_amp = torch.cuda.is_available() and torch.cuda.is_bf16_supported()
if use_amp:
amp_dtype = torch.bfloat16
else:
amp_dtype = torch.float32
with torch.amp.autocast('cuda', enabled=bool(use_amp), dtype=amp_dtype):
predictions = model(inputs)
# img
imgs = inputs["img"].permute(0, 1, 3, 4, 2)
imgs = imgs[0].detach().cpu().numpy() # S H W 3
# depth output
depth_preds = predictions["depth"]
depth_conf = predictions["depth_conf"]
depth_preds = depth_preds[0].detach().cpu().numpy() # S H W 1
depth_conf = depth_conf[0].detach().cpu().numpy() # S H W
# normal output
normal_preds = predictions["normals"] # S H W 3
normal_preds = normal_preds[0].detach().cpu().numpy() # S H W 3
# camera parameters
camera_poses = predictions["camera_poses"][0].detach().cpu().numpy() # [S,4,4]
camera_intrs = predictions["camera_intrs"][0].detach().cpu().numpy() # [S,3,3]
# points output
pts3d_preds = depth_to_world_coords_points(predictions["depth"][0, ..., 0], predictions["camera_poses"][0], predictions["camera_intrs"][0])[0]
pts3d_preds = pts3d_preds.detach().cpu().numpy() # S H W 3
pts3d_conf = depth_conf # S H W
# sky mask segmentation
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_file_from_url(
"https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx", "skyseg.onnx"
)
skyseg_session = onnxruntime.InferenceSession("skyseg.onnx")
sky_mask_list = []
for i, img_path in enumerate([os.path.join(image_folder_path, path) for path in os.listdir(image_folder_path)]):
sky_mask = segment_sky(img_path, skyseg_session)
# Resize mask to match H×W if needed
if sky_mask.shape[0] != imgs.shape[1] or sky_mask.shape[1] != imgs.shape[2]:
sky_mask = cv2.resize(sky_mask, (imgs.shape[2], imgs.shape[1]))
sky_mask_list.append(sky_mask)
sky_mask = np.stack(sky_mask_list, axis=0) # [S, H, W]
sky_mask = sky_mask>0
# mask computation
final_mask_list = []
for i in range(inputs["img"].shape[1]):
final_mask = None
if apply_confidence_mask:
# compute confidence mask based on the pointmap confidence
confidences = pts3d_conf[i, :, :] # [H, W]
percentile_threshold = np.quantile(confidences, confidence_percentile / 100.0)
conf_mask = confidences >= percentile_threshold
if final_mask is None:
final_mask = conf_mask
else:
final_mask = final_mask & conf_mask
if apply_edge_mask:
# compute edge mask based on the normalmap
normal_pred = normal_preds[i] # [H, W, 3]
normal_edges = normals_edge(
normal_pred, tol=edge_normal_threshold, mask=final_mask
)
# compute depth mask based on the depthmap
depth_pred = depth_preds[i, :, :, 0] # [H, W]
depth_edges = depth_edge(
depth_pred, rtol=edge_depth_threshold, mask=final_mask
)
edge_mask = ~(depth_edges & normal_edges)
if final_mask is None:
final_mask = edge_mask
else:
final_mask = final_mask & edge_mask
final_mask_list.append(final_mask)
if final_mask_list[0] is not None:
final_mask = np.stack(final_mask_list, axis=0) # [S, H, W]
else:
final_mask = np.ones(pts3d_conf.shape[:3], dtype=bool) # [S, H, W]
# gaussian splatting output
if "splats" in predictions:
splats_dict = {}
splats_dict['means'] = predictions["splats"]["means"]
splats_dict['scales'] = predictions["splats"]["scales"]
splats_dict['quats'] = predictions["splats"]["quats"]
splats_dict['opacities'] = predictions["splats"]["opacities"]
if "sh" in predictions["splats"]:
splats_dict['sh'] = predictions["splats"]["sh"]
if "colors" in predictions["splats"]:
splats_dict['colors'] = predictions["splats"]["colors"]
# output lists
outputs = {}
outputs['images'] = imgs
outputs['world_points'] = pts3d_preds
outputs['depth'] = depth_preds
outputs['normal'] = normal_preds
outputs['final_mask'] = final_mask
outputs['sky_mask'] = sky_mask
outputs['camera_poses'] = camera_poses
outputs['camera_intrs'] = camera_intrs
if "splats" in predictions:
outputs['splats'] = splats_dict
# Process data for visualization tabs (depth, normal)
processed_data = prepare_visualization_data(
outputs, inputs
)
# Clean up
torch.cuda.empty_cache()
return outputs, processed_data
# -------------------------------------------------------------------------
# Update and navigation function
# -------------------------------------------------------------------------
def update_view_info(current_view, total_views, view_type="Depth"):
"""Update view information display"""
return f"""
<div style='text-align: center; padding: 10px; background: #f8f8f8; color: #999; border-radius: 8px; margin-bottom: 10px;'>
<strong>{view_type} View Navigation</strong> |
Current: View {current_view} / {total_views} views
</div>
"""
def update_view_selectors(processed_data):
"""Update view selector sliders and info displays based on available views"""
if processed_data is None or len(processed_data) == 0:
num_views = 1
else:
num_views = len(processed_data)
# 确保 num_views 至少为 1
num_views = max(1, num_views)
# 更新滑块的最大值和视图信息,使用 gr.update() 而不是创建新组件
depth_slider_update = gr.update(minimum=1, maximum=num_views, value=1, step=1)
normal_slider_update = gr.update(minimum=1, maximum=num_views, value=1, step=1)
# 更新视图信息显示
depth_info_update = update_view_info(1, num_views, "Depth")
normal_info_update = update_view_info(1, num_views, "Normal")
return (
depth_slider_update, # depth_view_slider
normal_slider_update, # normal_view_slider
depth_info_update, # depth_view_info
normal_info_update, # normal_view_info
)
def get_view_data_by_index(processed_data, view_index):
"""Get view data by index, handling bounds"""
if processed_data is None or len(processed_data) == 0:
return None
view_keys = list(processed_data.keys())
if view_index < 0 or view_index >= len(view_keys):
view_index = 0
return processed_data[view_keys[view_index]]
def update_depth_view(processed_data, view_index):
"""Update depth view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["depth"] is None:
return None
return render_depth_visualization(view_data["depth"], mask=view_data.get("mask"))
def update_normal_view(processed_data, view_index):
"""Update normal view for a specific view index"""
view_data = get_view_data_by_index(processed_data, view_index)
if view_data is None or view_data["normal"] is None:
return None
return render_normal_visualization(view_data["normal"], mask=view_data.get("mask"))
def initialize_depth_normal_views(processed_data):
"""Initialize the depth and normal view displays with the first view data"""
if processed_data is None or len(processed_data) == 0:
return None, None
# Use update functions to ensure confidence filtering is applied from the start
depth_vis = update_depth_view(processed_data, 0)
normal_vis = update_normal_view(processed_data, 0)
return depth_vis, normal_vis
# -------------------------------------------------------------------------
# File upload and update preview gallery
# -------------------------------------------------------------------------
def process_uploaded_files(files, time_interval=1.0):
"""
Process uploaded files by extracting video frames or copying images.
Args:
files: List of uploaded file objects (videos or images)
time_interval: Interval in seconds for video frame extraction
Returns:
tuple: (target_dir, image_paths) where target_dir is the output directory
and image_paths is a list of processed image file paths
"""
gc.collect()
torch.cuda.empty_cache()
# Create unique output directory
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
target_dir = f"input_images_{timestamp}"
images_dir = os.path.join(target_dir, "images")
if os.path.exists(target_dir):
shutil.rmtree(target_dir)
os.makedirs(images_dir)
image_paths = []
if files is None:
return target_dir, image_paths
video_exts = [".mp4", ".avi", ".mov", ".mkv", ".wmv", ".flv", ".webm", ".m4v", ".3gp"]
for file_data in files:
# Get file path
if isinstance(file_data, dict) and "name" in file_data:
src_path = file_data["name"]
else:
src_path = str(file_data)
ext = os.path.splitext(src_path)[1].lower()
base_name = os.path.splitext(os.path.basename(src_path))[0]
# Process video: extract frames
if ext in video_exts:
cap = cv2.VideoCapture(src_path)
fps = cap.get(cv2.CAP_PROP_FPS)
interval = int(fps * time_interval)
frame_count = 0
saved_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % interval == 0:
dst_path = os.path.join(images_dir, f"{base_name}_{saved_count:06}.png")
cv2.imwrite(dst_path, frame)
image_paths.append(dst_path)
saved_count += 1
cap.release()
print(f"Extracted {saved_count} frames from: {os.path.basename(src_path)}")
# Process HEIC/HEIF: convert to JPEG
elif ext in [".heic", ".heif"]:
try:
with Image.open(src_path) as img:
if img.mode not in ("RGB", "L"):
img = img.convert("RGB")
dst_path = os.path.join(images_dir, f"{base_name}.jpg")
img.save(dst_path, "JPEG", quality=95)
image_paths.append(dst_path)
print(f"Converted HEIC: {os.path.basename(src_path)} -> {os.path.basename(dst_path)}")
except Exception as e:
print(f"HEIC conversion failed for {src_path}: {e}")
dst_path = os.path.join(images_dir, os.path.basename(src_path))
shutil.copy(src_path, dst_path)
image_paths.append(dst_path)
# Process regular images: copy directly
else:
dst_path = os.path.join(images_dir, os.path.basename(src_path))
shutil.copy(src_path, dst_path)
image_paths.append(dst_path)
image_paths = sorted(image_paths)
print(f"Processed files to {images_dir}")
return target_dir, image_paths
# Handle file upload and update preview gallery
def update_gallery_on_upload(input_video, input_images, time_interval=1.0):
"""
Process uploaded files immediately when user uploads or changes files,
and display them in the gallery. Returns (target_dir, image_paths).
If nothing is uploaded, returns None and empty list.
"""
if not input_video and not input_images:
return None, None, None, None
target_dir, image_paths = process_uploaded_files(input_video, input_images, time_interval)
return (
None,
target_dir,
image_paths,
"Upload complete. Click 'Reconstruct' to begin 3D processing.",
)
# -------------------------------------------------------------------------
# Init function
# -------------------------------------------------------------------------
def prepare_visualization_data(
model_outputs, input_views
):
"""Transform model predictions into structured format for display components"""
visualization_dict = {}
# Iterate through each input view
nviews = input_views["img"].shape[1]
for idx in range(nviews):
# Extract RGB image data
rgb_image = input_views["img"][0, idx].detach().cpu().numpy()
# Retrieve 3D coordinate predictions
world_coordinates = model_outputs["world_points"][idx]
# Build view-specific data structure
current_view_info = {
"image": rgb_image,
"points3d": world_coordinates,
"depth": None,
"normal": None,
"mask": None,
}
# Apply final segmentation mask from model
segmentation_mask = model_outputs["final_mask"][idx].copy()
current_view_info["mask"] = segmentation_mask
current_view_info["depth"] = model_outputs["depth"][idx].squeeze()
surface_normals = model_outputs["normal"][idx]
current_view_info["normal"] = surface_normals
visualization_dict[idx] = current_view_info
return visualization_dict
@spaces.GPU(duration=120)
def gradio_demo(
target_dir,
frame_selector="All",
show_camera=False,
filter_sky_bg=False,
show_mesh=False,
filter_ambiguous=False,
):
"""
Perform reconstruction using the already-created target_dir/images.
"""
# Capture terminal output
tee = TeeOutput()
old_stdout = sys.stdout
sys.stdout = tee
try:
if not os.path.isdir(target_dir) or target_dir == "None":
terminal_log = tee.getvalue()
sys.stdout = old_stdout
return None, "No valid target directory found. Please upload first.", None, None, None, None, None, None, None, None, None, None, None, None, terminal_log
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
# Prepare frame_selector dropdown
target_dir_images = os.path.join(target_dir, "images")
all_files = (
sorted(os.listdir(target_dir_images))
if os.path.isdir(target_dir_images)
else []
)
all_files = [f"{i}: {filename}" for i, filename in enumerate(all_files)]
frame_selector_choices = ["All"] + all_files
print("Running WorldMirror model...")
with torch.no_grad():
predictions, processed_data = run_model(target_dir)
# Save predictions
prediction_save_path = os.path.join(target_dir, "predictions.npz")
np.savez(prediction_save_path, **predictions)
# Save camera parameters as JSON
camera_params_file = save_camera_params(
predictions['camera_poses'],
predictions['camera_intrs'],
target_dir
)
# Handle None frame_selector
if frame_selector is None:
frame_selector = "All"
# Build a GLB file name
glbfile = os.path.join(
target_dir,
f"glbscene_{frame_selector.replace('.', '_').replace(':', '').replace(' ', '_')}_cam{show_camera}_mesh{show_mesh}.glb",
)
# Convert predictions to GLB
glbscene = convert_predictions_to_glb_scene(
predictions,
filter_by_frames=frame_selector,
show_camera=show_camera,
mask_sky_bg=filter_sky_bg,
as_mesh=show_mesh, # Use the show_mesh parameter
mask_ambiguous=filter_ambiguous
)
glbscene.export(file_obj=glbfile)
end_time = time.time()
print(f"Total time: {end_time - start_time:.2f} seconds")
log_msg = (
f"Reconstruction Success ({len(all_files)} frames). Waiting for visualization."
)
# Convert predictions to 3dgs ply
gs_file = None
splat_mode = 'ply'
if "splats" in predictions:
# Get Gaussian parameters (already filtered by GaussianSplatRenderer)
means = predictions["splats"]["means"][0].reshape(-1, 3)
scales = predictions["splats"]["scales"][0].reshape(-1, 3)
quats = predictions["splats"]["quats"][0].reshape(-1, 4)
colors = (predictions["splats"]["sh"][0] if "sh" in predictions["splats"] else predictions["splats"]["colors"][0]).reshape(-1, 3)
opacities = predictions["splats"]["opacities"][0].reshape(-1)
# Convert to torch tensors if needed
if not isinstance(means, torch.Tensor):
means = torch.from_numpy(means)
if not isinstance(scales, torch.Tensor):
scales = torch.from_numpy(scales)
if not isinstance(quats, torch.Tensor):
quats = torch.from_numpy(quats)
if not isinstance(colors, torch.Tensor):
colors = torch.from_numpy(colors)
if not isinstance(opacities, torch.Tensor):
opacities = torch.from_numpy(opacities)
if splat_mode == 'ply':
gs_file = os.path.join(target_dir, "gaussians.ply")
save_gs_ply(
gs_file,
means,
scales,
quats,
colors,
opacities
)
print(f"Saved Gaussian Splatting PLY to: {gs_file}")
print(f"File exists: {os.path.exists(gs_file)}")
if os.path.exists(gs_file):
print(f"File size: {os.path.getsize(gs_file)} bytes")
elif splat_mode == 'splat':
# Save Gaussian splat
plydata = convert_gs_to_ply(
means,
scales,
quats,
colors,
opacities
)
gs_file = os.path.join(target_dir, "gaussians.splat")
gs_file = process_ply_to_splat(plydata, gs_file)
# Initialize depth and normal view displays with processed data
depth_vis, normal_vis = initialize_depth_normal_views(
processed_data
)
# Update view selectors and info displays based on available views
depth_slider, normal_slider, depth_info, normal_info = update_view_selectors(
processed_data
)
# Automatically generate render video
# Generate render video if possible
rgb_video_path = None
depth_video_path = None
if "splats" in predictions:
# try:
from pathlib import Path
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get camera parameters and image dimensions
camera_poses = torch.tensor(predictions['camera_poses']).unsqueeze(0).to(device)
camera_intrs = torch.tensor(predictions['camera_intrs']).unsqueeze(0).to(device)
H, W = predictions['images'].shape[1], predictions['images'].shape[2]
# Render video
out_path = Path(target_dir) / "rendered_video"
render_interpolated_video(
model.gs_renderer,
predictions["splats"],
camera_poses,
camera_intrs,
(H, W),
out_path,
interp_per_pair=15,
loop_reverse=True,
save_mode="split"
)
# Check output files
rgb_video_path = str(out_path) + "_rgb.mp4"
depth_video_path = str(out_path) + "_depth.mp4"
if not os.path.exists(rgb_video_path) and not os.path.exists(depth_video_path):
rgb_video_path = None
depth_video_path = None
# Cleanup
del predictions
gc.collect()
torch.cuda.empty_cache()
# Get terminal output and restore stdout
terminal_log = tee.getvalue()
sys.stdout = old_stdout
return (
glbfile,
log_msg,
gr.Dropdown(choices=frame_selector_choices, value=frame_selector, interactive=True),
processed_data,
depth_vis,
normal_vis,
depth_slider,
normal_slider,
depth_info,
normal_info,
camera_params_file,
gs_file,
rgb_video_path,
depth_video_path,
terminal_log,
)
except Exception as e:
# In case of error, still restore stdout
terminal_log = tee.getvalue()
sys.stdout = old_stdout
print(f"Error occurred: {e}")
raise
# -------------------------------------------------------------------------
# Helper functions for visualization
# -------------------------------------------------------------------------
def render_depth_visualization(depth_map, mask=None):
"""Generate a color-coded depth visualization image with masking capabilities"""
if depth_map is None:
return None
# Create working copy and identify positive depth values
depth_copy = depth_map.copy()
positive_depth_mask = depth_copy > 0
# Combine with user-provided mask for filtering
if mask is not None:
positive_depth_mask = positive_depth_mask & mask
# Perform percentile-based normalization on valid regions
if positive_depth_mask.sum() > 0:
valid_depth_values = depth_copy[positive_depth_mask]
lower_bound = np.percentile(valid_depth_values, 5)
upper_bound = np.percentile(valid_depth_values, 95)
depth_copy[positive_depth_mask] = (depth_copy[positive_depth_mask] - lower_bound) / (upper_bound - lower_bound)
# Convert to RGB using matplotlib colormap
import matplotlib.pyplot as plt
color_mapper = plt.cm.turbo_r
rgb_result = color_mapper(depth_copy)
rgb_result = (rgb_result[:, :, :3] * 255).astype(np.uint8)
# Mark invalid regions with white color
rgb_result[~positive_depth_mask] = [255, 255, 255]
return rgb_result
def render_normal_visualization(normal_map, mask=None):
"""Convert surface normal vectors to RGB color representation for display"""
if normal_map is None:
return None
# Make a working copy to avoid modifying original data
normal_display = normal_map.copy()
# Handle masking by zeroing out invalid regions
if mask is not None:
masked_regions = ~mask
normal_display[masked_regions] = [0, 0, 0] # Zero out masked pixels
# Transform from [-1, 1] to [0, 1] range for RGB display
normal_display = (normal_display + 1.0) / 2.0
normal_display = (normal_display * 255).astype(np.uint8)
return normal_display
def clear_fields():
"""
Clears the 3D viewer, the stored target_dir, and empties the gallery.
"""
return None
def update_log():
"""
Display a quick log message while waiting.
"""
return "Loading and Reconstructing..."
def get_terminal_output():
"""
Get current terminal output for real-time display
"""
global current_terminal_output
return current_terminal_output
# -------------------------------------------------------------------------
# FunctionExample scene metadata extraction
# -------------------------------------------------------------------------
def extract_example_scenes_metadata(base_directory):
"""
Extract comprehensive metadata for all scene directories containing valid images.
Args:
base_directory: Root path where example scene directories are located
Returns:
Collection of dictionaries with scene details (title, location, preview, etc.)
"""
from glob import glob
# Return empty list if base directory is missing
if not os.path.exists(base_directory):
return []
# Define supported image format extensions
VALID_IMAGE_FORMATS = ['jpg', 'jpeg', 'png', 'bmp', 'tiff', 'tif']
scenes_data = []
# Process each subdirectory in the base directory
for directory_name in sorted(os.listdir(base_directory)):
current_directory = os.path.join(base_directory, directory_name)
# Filter out non-directory items
if not os.path.isdir(current_directory):
continue
# Gather all valid image files within the current directory
discovered_images = []
for file_format in VALID_IMAGE_FORMATS:
# Include both lowercase and uppercase format variations
discovered_images.extend(glob(os.path.join(current_directory, f'*.{file_format}')))
discovered_images.extend(glob(os.path.join(current_directory, f'*.{file_format.upper()}')))
# Skip directories without any valid images
if not discovered_images:
continue
# Ensure consistent image ordering
discovered_images.sort()
# Construct scene metadata record
scene_record = {
'name': directory_name,
'path': current_directory,
'thumbnail': discovered_images[0],
'num_images': len(discovered_images),
'image_files': discovered_images,
}
scenes_data.append(scene_record)
return scenes_data
def load_example_scenes(scene_name, scenes):
"""
Initialize and prepare an example scene for 3D reconstruction processing.
Args:
scene_name: Identifier of the target scene to load
scenes: List containing all available scene configurations
Returns:
Tuple containing processed scene data and status information
"""
# Locate the target scene configuration by matching names
target_scene_config = None
for scene_config in scenes:
if scene_config["name"] == scene_name:
target_scene_config = scene_config
break
# Handle case where requested scene doesn't exist
if target_scene_config is None:
return None, None, None, "Scene not found"
# Prepare image file paths for processing pipeline
# Extract all image file paths from the selected scene
image_file_paths = []
for img_file_path in target_scene_config["image_files"]:
image_file_paths.append(img_file_path)
# Process the scene images through the standard upload pipeline
processed_target_dir, processed_image_list = process_uploaded_files(image_file_paths, 1.0)
# Return structured response with scene data and user feedback
status_message = f"Successfully loaded scene '{scene_name}' containing {target_scene_config['num_images']} images. Click 'Reconstruct' to begin 3D processing."
return (
None, # Reset reconstruction visualization
None, # Reset gaussian splatting output
processed_target_dir, # Provide working directory path
processed_image_list, # Update image gallery display
status_message,
)
# -------------------------------------------------------------------------
# UI and event handling
# -------------------------------------------------------------------------
theme = gr.themes.Base()
with gr.Blocks(
theme=theme,
css="""
.custom-log * {
font-style: italic;
font-size: 22px !important;
background-image: linear-gradient(120deg, #a9b8f8 0%, #7081e8 60%, #4254c5 100%);
-webkit-background-clip: text;
background-clip: text;
font-weight: bold !important;
color: transparent !important;
text-align: center !important;
}
.normal-weight-btn button,
.normal-weight-btn button span,
.normal-weight-btn button *,
.normal-weight-btn * {
font-weight: 400 !important;
}
.terminal-output {
max-height: 400px !important;
overflow-y: auto !important;
}
.terminal-output textarea {
font-family: 'Monaco', 'Menlo', 'Ubuntu Mono', monospace !important;
font-size: 13px !important;
line-height: 1.5 !important;
color: #333 !important;
background-color: #f8f9fa !important;
max-height: 400px !important;
}
.example-gallery {
width: 100% !important;
}
.example-gallery img {
width: 100% !important;
height: 280px !important;
object-fit: contain !important;
aspect-ratio: 16 / 9 !important;
}
.example-gallery .grid-wrap {
width: 100% !important;
}
/* 滑块导航样式 */
.depth-tab-improved .gradio-slider input[type="range"] {
height: 8px !important;
border-radius: 4px !important;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
}
.depth-tab-improved .gradio-slider input[type="range"]::-webkit-slider-thumb {
height: 20px !important;
width: 20px !important;
border-radius: 50% !important;
background: #fff !important;
box-shadow: 0 2px 6px rgba(0,0,0,0.3) !important;
}
.depth-tab-improved button {
transition: all 0.3s ease !important;
border-radius: 6px !important;
font-weight: 500 !important;
}
.depth-tab-improved button:hover {
transform: translateY(-1px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
.normal-tab-improved .gradio-slider input[type="range"] {
height: 8px !important;
border-radius: 4px !important;
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%) !important;
}
.normal-tab-improved .gradio-slider input[type="range"]::-webkit-slider-thumb {
height: 20px !important;
width: 20px !important;
border-radius: 50% !important;
background: #fff !important;
box-shadow: 0 2px 6px rgba(0,0,0,0.3) !important;
}
.normal-tab-improved button {
transition: all 0.3s ease !important;
border-radius: 6px !important;
font-weight: 500 !important;
}
.normal-tab-improved button:hover {
transform: translateY(-1px) !important;
box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important;
}
#depth-view-info, #normal-view-info {
animation: fadeIn 0.5s ease-in-out;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(-10px); }
to { opacity: 1; transform: translateY(0); }
}
"""
) as demo:
# State variables for the tabbed interface
is_example = gr.Textbox(label="is_example", visible=False, value="None")
num_images = gr.Textbox(label="num_images", visible=False, value="None")
processed_data_state = gr.State(value=None)
current_view_index = gr.State(value=0) # Track current view index for navigation
# Header and description
gr.HTML(
"""
<div style="text-align: center;">
<h1>
<span style="background: linear-gradient(90deg, #3b82f6, #1e40af); -webkit-background-clip: text; background-clip: text; color: transparent; font-weight: bold;">WorldMirror:</span>
<span style="color: #555555;">Universal 3D World Reconstruction with Any Prior Prompting</span>
</h1>
<p>
<a href="https://arxiv.org/abs/2510.10726">📄 ArXiv Paper</a> |
<a href="https://3d-models.hunyuan.tencent.com/world/">🌐 Project Page</a> |
<a href="https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror">💻 GitHub Repository</a> |
<a href="https://huggingface.co/tencent/HunyuanWorld-Mirror">🤗 Hugging Face Model</a>
</p>
</div>
<div style="font-size: 16px; line-height: 1.5;">
<p>WorldMirror supports any combination of inputs (images, intrinsics, poses, and depth) and multiple outputs including point clouds, camera parameters, depth maps, normal maps, and 3D Gaussian Splatting (3DGS). </p>
<h3>How to Use:</h3>
<ol>
<li><strong>Upload Your Data:</strong> Click the "Upload Video or Images" button to add your files. Videos are automatically extracted into frames at one-second intervals.</li>
<li><strong>Reconstruct:</strong> Click the "Reconstruct" button to start the 3D reconstruction.</li>
<li><strong>Visualize:</strong> Explore multiple reconstruction results across different tabs:
<ul>
<li><strong>3D View:</strong> Interactive point cloud/mesh visualization with camera poses (downloadable as GLB)</li>
<li><strong>3D Gaussian Splatting:</strong> Interactive 3D Gaussian Splatting visualization with RGB and depth videos (downloadable as PLY)</li>
<li><strong>Depth Maps:</strong> Per-view depth estimation results (downloadable as PNG)</li>
<li><strong>Normal Maps:</strong> Per-view surface orientation visualization (downloadable as PNG)</li>
<li><strong>Camera Parameters:</strong> Estimated camera poses and intrinsics (downloadable as JSON)</li>
</ul>
</li>
</ol>
<p><strong style="color: #3b82f6;">Please note: Loading data and displaying 3D effects may take a moment. For faster performance, we recommend downloading the code from our GitHub and running it locally.</strong></p>
</div>
""")
output_path_state = gr.Textbox(label="Output Path", visible=False, value="None")
# Main UI components
with gr.Row(equal_height=False):
with gr.Column(scale=1):
file_upload = gr.File(
file_count="multiple",
label="Upload Video or Images",
interactive=True,
file_types=["image", "video"],
height="200px",
)
time_interval = gr.Slider(
minimum=0.1,
maximum=10.0,
value=1.0,
step=0.1,
label="Video Sample interval",
interactive=True,
visible=True,
scale=4,
)
resample_btn = gr.Button(
"Resample",
visible=True,
scale=1,
elem_classes=["normal-weight-btn"],
)
image_gallery = gr.Gallery(
label="Image Preview",
columns=4,
height="200px",
show_download_button=True,
object_fit="contain",
preview=True
)
terminal_output = gr.Textbox(
label="Terminal Output",
lines=6,
max_lines=6,
interactive=False,
show_copy_button=True,
container=True,
elem_classes=["terminal-output"],
autoscroll=True
)
with gr.Column(scale=3):
log_output = gr.Markdown(
"Upload video or images first, then click Reconstruct to start processing",
elem_classes=["custom-log"],
)
with gr.Tabs() as tabs:
with gr.Tab("3D Gaussian Splatting", id=1) as gs_tab:
with gr.Row():
with gr.Column(scale=3):
gs_output = gr.Model3D(
label="Gaussian Splatting",
height=500,
)
with gr.Column(scale=1):
gs_rgb_video = gr.Video(
label="Rendered RGB Video",
height=250,
autoplay=False,
loop=False,
interactive=False,
)
gs_depth_video = gr.Video(
label="Rendered Depth Video",
height=250,
autoplay=False,
loop=False,
interactive=False,
)
with gr.Tab("Point Cloud/Mesh", id=0):
reconstruction_output = gr.Model3D(
label="3D Pointmap/Mesh",
height=500,
zoom_speed=0.4,
pan_speed=0.4,
)
with gr.Tab("Depth", elem_classes=["depth-tab-improved"]):
depth_view_info = gr.HTML(
value="<div style='text-align: center; padding: 10px; background: #f8f8f8; color: #999; border-radius: 8px; margin-bottom: 10px;'>"
"<strong>Depth View Navigation</strong> | Current: View 1 / 1 views</div>",
elem_id="depth-view-info"
)
depth_view_slider = gr.Slider(
minimum=1,
maximum=1,
step=1,
value=1,
label="View Selection Slider",
interactive=True,
elem_id="depth-view-slider"
)
depth_map = gr.Image(
type="numpy",
label="Depth Map",
format="png",
interactive=False,
height=340
)
with gr.Tab("Normal", elem_classes=["normal-tab-improved"]):
normal_view_info = gr.HTML(
value="<div style='text-align: center; padding: 10px; background: #f8f8f8; color: #999; border-radius: 8px; margin-bottom: 10px;'>"
"<strong>Normal View Navigation</strong> | Current: View 1 / 1 views</div>",
elem_id="normal-view-info"
)
normal_view_slider = gr.Slider(
minimum=1,
maximum=1,
step=1,
value=1,
label="View Selection Slider",
interactive=True,
elem_id="normal-view-slider"
)
normal_map = gr.Image(
type="numpy",
label="Normal Map",
format="png",
interactive=False,
height=340
)
with gr.Tab("Camera Parameters", elem_classes=["camera-tab"]):
with gr.Row():
gr.HTML("")
camera_params = gr.DownloadButton(
label="Download Camera Parameters",
scale=1,
variant="primary",
)
gr.HTML("")
with gr.Row():
reconstruct_btn = gr.Button(
"Reconstruct",
scale=1,
variant="primary"
)
clear_btn = gr.ClearButton(
[
file_upload,
reconstruction_output,
log_output,
output_path_state,
image_gallery,
depth_map,
normal_map,
depth_view_slider,
normal_view_slider,
depth_view_info,
normal_view_info,
camera_params,
gs_output,
gs_rgb_video,
gs_depth_video,
],
scale=1,
)
with gr.Row():
frame_selector = gr.Dropdown(
choices=["All"], value="All", label="Show Points of a Specific Frame"
)
gr.Markdown("### Reconstruction Options: (not applied to 3DGS)")
with gr.Row():
show_camera = gr.Checkbox(label="Show Camera", value=True)
show_mesh = gr.Checkbox(label="Show Mesh", value=True)
filter_ambiguous = gr.Checkbox(label="Filter low confidence & depth/normal edges", value=True)
filter_sky_bg = gr.Checkbox(label="Filter Sky Background", value=False)
with gr.Column(scale=1):
gr.Markdown("### Click to load example scenes")
realworld_scenes = extract_example_scenes_metadata("examples/realistic") if os.path.exists("examples/realistic") else extract_example_scenes_metadata("examples")
generated_scenes = extract_example_scenes_metadata("examples/stylistic") if os.path.exists("examples/stylistic") else []
# If no subdirectories exist, fall back to single gallery
if not os.path.exists("examples/realistic") and not os.path.exists("examples/stylistic"):
# Fallback: use all scenes from examples directory
all_scenes = extract_example_scenes_metadata("examples")
if all_scenes:
gallery_items = [
(scene["thumbnail"], f"{scene['name']}\n📷 {scene['num_images']} images")
for scene in all_scenes
]
example_gallery = gr.Gallery(
value=gallery_items,
label="Example Scenes",
columns=1,
rows=None,
height=800,
object_fit="contain",
show_label=False,
interactive=True,
preview=False,
allow_preview=False,
elem_classes=["example-gallery"]
)
def handle_example_selection(evt: gr.SelectData):
if evt:
result = load_example_scenes(all_scenes[evt.index]["name"], all_scenes)
return result
return (None, None, None, None, "No scene selected")
example_gallery.select(
fn=handle_example_selection,
outputs=[
reconstruction_output,
gs_output,
output_path_state,
image_gallery,
log_output,
],
)
else:
# Tabbed interface for categorized examples
with gr.Tabs():
with gr.Tab("🌍 Realistic Cases"):
if realworld_scenes:
realworld_items = [
(scene["thumbnail"], f"{scene['name']}\n📷 {scene['num_images']} images")
for scene in realworld_scenes
]
realworld_gallery = gr.Gallery(
value=realworld_items,
label="Real-world Examples",
columns=1,
rows=None,
height=750,
object_fit="contain",
show_label=False,
interactive=True,
preview=False,
allow_preview=False,
elem_classes=["example-gallery"]
)
def handle_realworld_selection(evt: gr.SelectData):
if evt:
result = load_example_scenes(realworld_scenes[evt.index]["name"], realworld_scenes)
return result
return (None, None, None, None, "No scene selected")
realworld_gallery.select(
fn=handle_realworld_selection,
outputs=[
reconstruction_output,
gs_output,
output_path_state,
image_gallery,
log_output,
],
)
else:
gr.Markdown("No real-world examples available")
with gr.Tab("🎨 Stylistic Cases"):
if generated_scenes:
generated_items = [
(scene["thumbnail"], f"{scene['name']}\n📷 {scene['num_images']} images")
for scene in generated_scenes
]
generated_gallery = gr.Gallery(
value=generated_items,
label="Generated Examples",
columns=1,
rows=None,
height=750,
object_fit="contain",
show_label=False,
interactive=True,
preview=False,
allow_preview=False,
elem_classes=["example-gallery"]
)
def handle_generated_selection(evt: gr.SelectData):
if evt:
result = load_example_scenes(generated_scenes[evt.index]["name"], generated_scenes)
return result
return (None, None, None, None, "No scene selected")
generated_gallery.select(
fn=handle_generated_selection,
outputs=[
reconstruction_output,
gs_output,
output_path_state,
image_gallery,
log_output,
],
)
else:
gr.Markdown("No generated examples available")
# -------------------------------------------------------------------------
# Click logic
# -------------------------------------------------------------------------
reconstruct_btn.click(fn=clear_fields, inputs=[], outputs=[]).then(
fn=update_log, inputs=[], outputs=[log_output]
).then(
fn=gradio_demo,
inputs=[
output_path_state,
frame_selector,
show_camera,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
outputs=[
reconstruction_output,
log_output,
frame_selector,
processed_data_state,
depth_map,
normal_map,
depth_view_slider,
normal_view_slider,
depth_view_info,
normal_view_info,
camera_params,
gs_output,
gs_rgb_video,
gs_depth_video,
terminal_output,
],
).then(
fn=lambda: "False",
inputs=[],
outputs=[is_example], # set is_example to "False"
)
# -------------------------------------------------------------------------
# Live update logic
# -------------------------------------------------------------------------
def refresh_3d_scene(
workspace_path,
frame_selector,
show_camera,
is_example,
filter_sky_bg=False,
show_mesh=False,
filter_ambiguous=False
):
"""
Refresh 3D scene visualization
Load prediction data from workspace, generate or reuse GLB scene files based on current parameters,
and return file paths needed for the 3D viewer.
Args:
workspace_path: Workspace directory path for reconstruction results
frame_selector: Frame selector value for filtering points from specific frames
show_camera: Whether to display camera positions
is_example: Whether this is an example scene
filter_sky_bg: Whether to filter sky background
show_mesh: Whether to display as mesh mode
filter_ambiguous: Whether to filter low-confidence ambiguous areas
Returns:
tuple: (GLB scene file path, Gaussian point cloud file path, status message)
"""
# If example scene is clicked, skip processing directly
if is_example == "True":
return (
gr.update(),
gr.update(),
"No reconstruction results available. Please click the Reconstruct button first.",
)
# Validate workspace directory path
if not workspace_path or workspace_path == "None" or not os.path.isdir(workspace_path):
return (
gr.update(),
gr.update(),
"No reconstruction results available. Please click the Reconstruct button first.",
)
# Check if prediction data file exists
prediction_file_path = os.path.join(workspace_path, "predictions.npz")
if not os.path.exists(prediction_file_path):
return (
gr.update(),
gr.update(),
f"Prediction file does not exist: {prediction_file_path}. Please run reconstruction first.",
)
# Load prediction data
prediction_data = np.load(prediction_file_path, allow_pickle=True)
predictions = {key: prediction_data[key] for key in prediction_data.keys() if key != 'splats'}
# Generate GLB scene file path (named based on parameter combination)
safe_frame_name = frame_selector.replace('.', '_').replace(':', '').replace(' ', '_')
scene_filename = f"scene_{safe_frame_name}_cam{show_camera}_mesh{show_mesh}_edges{filter_ambiguous}_sky{filter_sky_bg}.glb"
scene_glb_path = os.path.join(workspace_path, scene_filename)
# If GLB file doesn't exist, generate new scene file
if not os.path.exists(scene_glb_path):
scene_model = convert_predictions_to_glb_scene(
predictions,
filter_by_frames=frame_selector,
show_camera=show_camera,
mask_sky_bg=filter_sky_bg,
as_mesh=show_mesh,
mask_ambiguous=filter_ambiguous
)
scene_model.export(file_obj=scene_glb_path)
# Find Gaussian point cloud file
gaussian_file_path = os.path.join(workspace_path, "gaussians.ply")
if not os.path.exists(gaussian_file_path):
gaussian_file_path = None
return (
scene_glb_path,
gaussian_file_path,
"3D scene updated.",
)
def refresh_view_displays_on_filter_update(
workspace_dir,
sky_background_filter,
current_processed_data,
depth_slider_position,
normal_slider_position,
):
"""
Refresh depth and normal view displays when filter settings change
When the background filter checkbox state changes, regenerate processed data and update all view displays.
This ensures that filter effects are reflected in real-time in the depth map and normal map visualizations.
Args:
workspace_dir: Workspace directory path containing prediction data and images
sky_background_filter: Sky background filter enable status
current_processed_data: Currently processed visualization data
depth_slider_position: Current position of the depth view slider
normal_slider_position: Current position of the normal view slider
Returns:
tuple: (updated processed data, depth visualization result, normal visualization result)
"""
# Validate workspace directory validity
if not workspace_dir or workspace_dir == "None" or not os.path.isdir(workspace_dir):
return current_processed_data, None, None
# Build and check prediction data file path
prediction_data_path = os.path.join(workspace_dir, "predictions.npz")
if not os.path.exists(prediction_data_path):
return current_processed_data, None, None
try:
# Load raw prediction data
raw_prediction_data = np.load(prediction_data_path, allow_pickle=True)
predictions_dict = {key: raw_prediction_data[key] for key in raw_prediction_data.keys()}
# Load image data using WorldMirror's load_images function
images_directory = os.path.join(workspace_dir, "images")
image_file_paths = [os.path.join(images_directory, path) for path in os.listdir(images_directory)]
img = load_and_preprocess_images(image_file_paths)
img = img.detach().cpu().numpy()
# Regenerate processed data with new filter settings
refreshed_data = {}
for view_idx in range(img.shape[1]):
view_data = {
"image": img[0, view_idx],
"points3d": predictions_dict["world_points"][view_idx],
"depth": None,
"normal": None,
"mask": None,
}
mask = predictions_dict["final_mask"][view_idx].copy()
if sky_background_filter:
sky_mask = predictions_dict["sky_mask"][view_idx]
mask = mask & sky_mask
view_data["mask"] = mask
view_data["depth"] = predictions_dict["depth"][view_idx].squeeze()
view_data["normal"] = predictions_dict["normal"][view_idx]
refreshed_data[view_idx] = view_data
# Get current view indices from slider positions (convert to 0-based indices)
current_depth_index = int(depth_slider_position) - 1 if depth_slider_position else 0
current_normal_index = int(normal_slider_position) - 1 if normal_slider_position else 0
# Update depth and normal views with new filter data
updated_depth_visualization = update_depth_view(refreshed_data, current_depth_index)
updated_normal_visualization = update_normal_view(refreshed_data, current_normal_index)
return refreshed_data, updated_depth_visualization, updated_normal_visualization
except Exception as error:
print(f"Error occurred while refreshing view displays: {error}")
return current_processed_data, None, None
frame_selector.change(
refresh_3d_scene,
[
output_path_state,
frame_selector,
show_camera,
is_example,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
[reconstruction_output, gs_output, log_output],
)
show_camera.change(
refresh_3d_scene,
[
output_path_state,
frame_selector,
show_camera,
is_example,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
[reconstruction_output, gs_output, log_output],
)
show_mesh.change(
refresh_3d_scene,
[
output_path_state,
frame_selector,
show_camera,
is_example,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
[reconstruction_output, gs_output, log_output],
)
filter_sky_bg.change(
refresh_3d_scene,
[
output_path_state,
frame_selector,
show_camera,
is_example,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
[reconstruction_output, gs_output, log_output],
).then(
fn=refresh_view_displays_on_filter_update,
inputs=[
output_path_state,
filter_sky_bg,
processed_data_state,
depth_view_slider,
normal_view_slider,
],
outputs=[
processed_data_state,
depth_map,
normal_map,
],
)
filter_ambiguous.change(
refresh_3d_scene,
[
output_path_state,
frame_selector,
show_camera,
is_example,
filter_sky_bg,
show_mesh,
filter_ambiguous
],
[reconstruction_output, gs_output, log_output],
).then(
fn=refresh_view_displays_on_filter_update,
inputs=[
output_path_state,
filter_sky_bg,
processed_data_state,
depth_view_slider,
normal_view_slider,
],
outputs=[
processed_data_state,
depth_map,
normal_map,
],
)
# -------------------------------------------------------------------------
# Auto update gallery when user uploads or changes files
# -------------------------------------------------------------------------
def update_gallery_on_file_upload(files, interval):
if not files:
return None, None, None, ""
# Capture terminal output
tee = TeeOutput()
old_stdout = sys.stdout
sys.stdout = tee
try:
target_dir, image_paths = process_uploaded_files(files, interval)
terminal_log = tee.getvalue()
sys.stdout = old_stdout
return (
target_dir,
image_paths,
"Upload complete. Click 'Reconstruct' to begin 3D processing.",
terminal_log,
)
except Exception as e:
terminal_log = tee.getvalue()
sys.stdout = old_stdout
print(f"Error occurred: {e}")
raise
def resample_video_with_new_interval(files, new_interval, current_target_dir):
"""Resample video with new slider value"""
if not files:
return (
current_target_dir,
None,
"No files to resample.",
"",
)
# Check if we have videos to resample
video_extensions = [
".mp4",
".avi",
".mov",
".mkv",
".wmv",
".flv",
".webm",
".m4v",
".3gp",
]
has_video = any(
os.path.splitext(
str(file_data["name"] if isinstance(file_data, dict) else file_data)
)[1].lower()
in video_extensions
for file_data in files
)
if not has_video:
return (
current_target_dir,
None,
"No videos found to resample.",
"",
)
# Capture terminal output
tee = TeeOutput()
old_stdout = sys.stdout
sys.stdout = tee
try:
# Clean up old target directory if it exists
if (
current_target_dir
and current_target_dir != "None"
and os.path.exists(current_target_dir)
):
shutil.rmtree(current_target_dir)
# Process files with new interval
target_dir, image_paths = process_uploaded_files(files, new_interval)
terminal_log = tee.getvalue()
sys.stdout = old_stdout
return (
target_dir,
image_paths,
f"Video resampled with {new_interval}s interval. Click 'Reconstruct' to begin 3D processing.",
terminal_log,
)
except Exception as e:
terminal_log = tee.getvalue()
sys.stdout = old_stdout
print(f"Error occurred: {e}")
raise
file_upload.change(
fn=update_gallery_on_file_upload,
inputs=[file_upload, time_interval],
outputs=[output_path_state, image_gallery, log_output, terminal_output],
)
resample_btn.click(
fn=resample_video_with_new_interval,
inputs=[file_upload, time_interval, output_path_state],
outputs=[output_path_state, image_gallery, log_output, terminal_output],
)
# -------------------------------------------------------------------------
# Navigation for Depth, Normal tabs
# -------------------------------------------------------------------------
def navigate_with_slider(processed_data, target_view):
"""Navigate to specified view using slider"""
if processed_data is None or len(processed_data) == 0:
return None, update_view_info(1, 1)
# Check if target_view is None or invalid value, and safely convert to int
try:
if target_view is None:
target_view = 1
else:
target_view = int(float(target_view)) # Convert to float first then int, handle decimal input
except (ValueError, TypeError):
target_view = 1
total_views = len(processed_data)
# Ensure view index is within valid range
view_index = max(1, min(target_view, total_views)) - 1
# Update depth map
depth_vis = update_depth_view(processed_data, view_index)
# Update view information
info_html = update_view_info(view_index + 1, total_views)
return depth_vis, info_html
def navigate_with_slider_normal(processed_data, target_view):
"""Navigate to specified normal view using slider"""
if processed_data is None or len(processed_data) == 0:
return None, update_view_info(1, 1, "Normal")
# Check if target_view is None or invalid value, and safely convert to int
try:
if target_view is None:
target_view = 1
else:
target_view = int(float(target_view)) # Convert to float first then int, handle decimal input
except (ValueError, TypeError):
target_view = 1
total_views = len(processed_data)
# Ensure view index is within valid range
view_index = max(1, min(target_view, total_views)) - 1
# Update normal map
normal_vis = update_normal_view(processed_data, view_index)
# Update view information
info_html = update_view_info(view_index + 1, total_views, "Normal")
return normal_vis, info_html
def handle_depth_slider_change(processed_data, target_view):
return navigate_with_slider(processed_data, target_view)
def handle_normal_slider_change(processed_data, target_view):
return navigate_with_slider_normal(processed_data, target_view)
depth_view_slider.change(
fn=handle_depth_slider_change,
inputs=[processed_data_state, depth_view_slider],
outputs=[depth_map, depth_view_info]
)
normal_view_slider.change(
fn=handle_normal_slider_change,
inputs=[processed_data_state, normal_view_slider],
outputs=[normal_map, normal_view_info]
)
# -------------------------------------------------------------------------
# Real-time terminal output update
# -------------------------------------------------------------------------
# Use a timer to periodically update terminal output
timer = gr.Timer(value=0.5) # Update every 0.5 seconds
timer.tick(
fn=get_terminal_output,
inputs=[],
outputs=[terminal_output]
)
gr.HTML("""
<hr style="margin-top: 40px; margin-bottom: 20px;">
<div style="text-align: center; font-size: 14px; color: #666; margin-bottom: 20px;">
<h3>Acknowledgements</h3>
<p>🔗 <a href="https://github.com/microsoft/MoGe">MoGe2 on HuggingFace</a> | 🔗 <a href="https://github.com/facebookresearch/vggt">VGGT on HuggingFace</a></p>
</div>
""")
demo.queue().launch(
show_error=True,
share=True,
ssr_mode=False,
)
|