Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| from agent import initialize_agent # Import the agent initialization function | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Helper Functions --- | |
| def _fetch_questions(api_url: str) -> list: | |
| """Fetches evaluation questions from the API.""" | |
| questions_url = f"{api_url}/questions" | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| raise ValueError("Fetched questions list is empty or invalid format.") | |
| print(f"Fetched {len(questions_data)} questions.") | |
| return questions_data | |
| except requests.exceptions.RequestException as e: | |
| raise RuntimeError(f"Error fetching questions: {e}") from e | |
| except requests.exceptions.JSONDecodeError as e: | |
| raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e | |
| except Exception as e: | |
| raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e | |
| def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]: | |
| """Runs the agent on each question and collects answers and logs.""" | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| submitted_answer = agent(question_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| return answers_payload, results_log | |
| def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict: | |
| """Submits the agent's answers to the evaluation API.""" | |
| submit_url = f"{api_url}/submit" | |
| submission_data = {"username": username.strip(), "agent_code": agent_code_url, "answers": answers_payload} | |
| print(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| return response.json() | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| raise RuntimeError(f"Submission Failed: {error_detail}") from e | |
| except requests.exceptions.Timeout: | |
| raise RuntimeError("Submission Failed: The request timed out.") from e | |
| except requests.exceptions.RequestException as e: | |
| raise RuntimeError(f"Submission Failed: Network error - {e}") from e | |
| except Exception as e: | |
| raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e | |
| # --- Main Gradio Function --- | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Orchestrates the fetching of questions, running the agent, and submitting answers. | |
| """ | |
| username = None | |
| if profile: | |
| username = profile.username | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| if not username: | |
| return "Hugging Face username not found. Please ensure you are logged in.", None | |
| space_id = os.getenv("SPACE_ID") | |
| if not space_id: | |
| print("SPACE_ID environment variable not found. Cannot determine agent_code URL.") | |
| return "Error: SPACE_ID not set. Cannot determine agent_code URL.", None | |
| agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| status_message = "" | |
| results_df = pd.DataFrame() | |
| try: | |
| # 1. Instantiate Agent | |
| print("Initializing agent...") | |
| agent = initialize_agent() | |
| if agent is None: | |
| raise RuntimeError("Agent initialization failed. Check agent.py for details.") | |
| print("Agent initialized successfully.") | |
| # 2. Fetch Questions | |
| questions_data = _fetch_questions(DEFAULT_API_URL) | |
| # 3. Run Agent on Questions | |
| answers_payload, results_log = _run_agent_on_questions(agent, questions_data) | |
| if not answers_payload: | |
| status_message = "Agent did not produce any answers to submit." | |
| return status_message, pd.DataFrame(results_log) | |
| # 4. Submit Answers | |
| submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload) | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {submission_result.get('username')}\n" | |
| f"Overall Score: {submission_result.get('score', 'N/A')}% " | |
| f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n" | |
| f"Message: {submission_result.get('message', 'No message received.')}" | |
| ) | |
| status_message = final_status | |
| results_df = pd.DataFrame(results_log) | |
| except RuntimeError as e: | |
| status_message = f"Operation Failed: {e}" | |
| print(status_message) | |
| # If an error occurs during agent run, results_log might be partially filled | |
| # Ensure results_df is created even if answers_payload is empty due to early error | |
| if 'results_log' in locals(): | |
| results_df = pd.DataFrame(results_log) | |
| else: | |
| results_df = pd.DataFrame([{"Status": "Error", "Details": str(e)}]) | |
| except Exception as e: | |
| status_message = f"An unexpected critical error occurred: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}]) | |
| return status_message, results_df | |
| # --- Gradio Interface Definition --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# GAIA Benchmark Evaluation with smolagent") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Clone this Space and modify `agent.py` to define your agent's logic, tools, and necessary packages. | |
| 2. Log in to your Hugging Face account using the button below. Your HF username will be used for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score. | |
| --- | |
| **Important Notes:** | |
| * The evaluation process can take some time as the agent processes all questions. | |
| * This Space provides a basic setup. You are encouraged to develop a more robust solution (e.g., caching answers, asynchronous processing) for production use. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |