Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import GPT2Tokenizer, AutoModelForCausalLM | |
| import numpy as np | |
| MODEL_NAME = "gpt2" | |
| if __name__ == "__main__": | |
| # Define your model and your tokenizer | |
| tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| model.config.pad_token_id = model.config.eos_token_id | |
| # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order! | |
| probs_to_label = [ | |
| (0.1, "p >= 10%"), | |
| (0.01, "p >= 1%"), | |
| (1e-20, "p < 1%"), | |
| ] | |
| label_to_color = { | |
| "p >= 10%": "green", | |
| "p >= 1%": "yellow", | |
| "p < 1%": "red" | |
| } | |
| def get_tokens_and_labels(prompt): | |
| """ | |
| Given the prompt (text), return a list of tuples (decoded_token, label) | |
| """ | |
| inputs = tokenizer([prompt], return_tensors="pt") | |
| outputs = model.generate( | |
| **inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True | |
| ) | |
| # Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1) | |
| transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) | |
| transition_proba = np.exp(transition_scores) | |
| # We only have scores for the generated tokens, so pop out the prompt tokens | |
| input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1] | |
| generated_tokens = outputs.sequences[:, input_length:] | |
| # Initialize the highlighted output with the prompt, which will have no color label | |
| highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids] | |
| # Get the (decoded_token, label) pairs for the generated tokens | |
| for token, proba in zip(generated_tokens[0], transition_proba[0]): | |
| this_label = None | |
| assert 0. <= proba <= 1.0 | |
| for min_proba, label in probs_to_label: | |
| if proba >= min_proba: | |
| this_label = label | |
| break | |
| highlighted_out.append((tokenizer.decode(token), this_label)) | |
| return highlighted_out | |
| demo = gr.Blocks() | |
| with demo: | |
| gr.Markdown( | |
| """ | |
| # Color Coded Text Generation | |
| This is a demo of how you can obtain the probabilities of each token being generated, and use them to | |
| color code the generated text π’π‘π΄. Feel free to clone this demo and modify it to your needs π€ | |
| Internally, it relies on [`compute_transition_scores`](https://huggingface.co/docs/transformers/main/en/main_classes/text_generation#transformers.GenerationMixin.compute_transition_scores), | |
| which was added in `transformers` v4.26.0. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", lines=3, value="Today is") | |
| button = gr.Button(f"Generate with {MODEL_NAME}") | |
| with gr.Column(): | |
| highlighted_text = gr.HighlightedText( | |
| label="Highlighted generation", | |
| combine_adjacent=True, | |
| show_legend=True, | |
| ).style(color_map=label_to_color) | |
| button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text) | |
| if __name__ == "__main__": | |
| demo.launch() | |