Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,157 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import json
|
| 3 |
+
from data_module import faq_data, model_options
|
| 4 |
+
import uuid
|
| 5 |
+
from chat_handler import ChatHandler
|
| 6 |
|
| 7 |
+
chat = ChatHandler()
|
| 8 |
+
def add_custom_css():
|
| 9 |
+
st.markdown("""
|
| 10 |
+
<style>
|
| 11 |
+
.css-1d391kg { width: 35%; }
|
| 12 |
+
</style>
|
| 13 |
+
""", unsafe_allow_html=True)
|
| 14 |
+
def generate_user_id():
|
| 15 |
+
new_id = chat.generate_id()
|
| 16 |
+
return new_id
|
| 17 |
+
|
| 18 |
+
def clear_history(user_id):
|
| 19 |
+
chat.clear_history(user_id)
|
| 20 |
+
return 'response'
|
| 21 |
+
|
| 22 |
+
if 'user_id' not in st.session_state:
|
| 23 |
+
st.session_state['user_id'] = generate_user_id()
|
| 24 |
+
|
| 25 |
+
with open("embeddings_db_model.json", "r") as file:
|
| 26 |
+
embedding_models = json.load(file)
|
| 27 |
+
embedding_model_names = [model["model"] for model in embedding_models]
|
| 28 |
+
|
| 29 |
+
agent_types = [
|
| 30 |
+
'JSON_CHAT_MODEL',
|
| 31 |
+
'REACT_TEXT'
|
| 32 |
+
]
|
| 33 |
+
selected_model = st.sidebar.selectbox("Escolha o Modelo LLM", model_options)
|
| 34 |
+
selected_embedding_model = st.sidebar.selectbox("Escolha o Modelo de Embedding", embedding_model_names)
|
| 35 |
+
selected_embedding_dir = next(item for item in embedding_models if item["model"] == selected_embedding_model)["dir"]
|
| 36 |
+
selected_agent_type = st.sidebar.selectbox("Escolha o Tipo de Agent", agent_types)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
add_custom_css()
|
| 40 |
+
with st.sidebar:
|
| 41 |
+
st.write("## Opções de Controle")
|
| 42 |
+
if st.button('Limpar Histórico'):
|
| 43 |
+
# Fazer a requisição para limpar o histórico
|
| 44 |
+
response = clear_history(st.session_state['user_id'])
|
| 45 |
+
if response:
|
| 46 |
+
st.session_state.messages = [{"role": "assistant", "content": "Histórico limpo. Pode começar uma nova conversa."}]
|
| 47 |
+
st.rerun()
|
| 48 |
+
else:
|
| 49 |
+
st.error("Erro ao limpar o histórico")
|
| 50 |
+
with st.container():
|
| 51 |
+
col1, col2 = st.columns([1, 1])
|
| 52 |
+
with col1:
|
| 53 |
+
st.caption("LLM:")
|
| 54 |
+
st.write(selected_model)
|
| 55 |
+
with col2:
|
| 56 |
+
st.caption("Embeddings:")
|
| 57 |
+
st.write(selected_embedding_model)
|
| 58 |
+
|
| 59 |
+
st.title("⚖️ ChatBot Direito Tributário")
|
| 60 |
+
st.caption("Direito Tributário da Pessoa Jurídica")
|
| 61 |
+
st.caption("Projeto do Workshop de LLM UFG")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if "messages" not in st.session_state:
|
| 66 |
+
st.session_state["messages"] = [{"role": "assistant", "content": "Olá como posso ajudar?"}]
|
| 67 |
+
if "faq_question" not in st.session_state:
|
| 68 |
+
st.session_state["faq_question"] = None
|
| 69 |
+
|
| 70 |
+
# Input de chat do usuário
|
| 71 |
+
for msg in st.session_state.messages:
|
| 72 |
+
if msg['role'] == 'assistant':
|
| 73 |
+
img = "server_icon.png"
|
| 74 |
+
else:
|
| 75 |
+
img = 'user_icon.png'
|
| 76 |
+
st.chat_message(msg["role"],avatar=img).write(msg["content"])
|
| 77 |
+
|
| 78 |
+
def process_question(question):
|
| 79 |
+
st.session_state.messages.append({"role": "user", "content": question})
|
| 80 |
+
st.chat_message("user", avatar="user_icon.png").write(question)
|
| 81 |
+
|
| 82 |
+
with st.chat_message("assistant", avatar="server_icon.png"):
|
| 83 |
+
with st.spinner("Thinking..."):
|
| 84 |
+
data = dict(
|
| 85 |
+
user_id=st.session_state['user_id'],
|
| 86 |
+
text= question,
|
| 87 |
+
embedding_model= selected_embedding_model,
|
| 88 |
+
embedding_dir= selected_embedding_dir,
|
| 89 |
+
model= selected_model,
|
| 90 |
+
agent_type=selected_agent_type
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
msg,intermediary_steps = chat.post_message(message=data)
|
| 94 |
+
st.write(str(msg))
|
| 95 |
+
st.session_state.messages.append({"role": "assistant", "content": msg})
|
| 96 |
+
# Adicionando os passos intermediários
|
| 97 |
+
#intermediary_steps = response['response']['intermediate_steps']
|
| 98 |
+
# intermediary_steps = []
|
| 99 |
+
|
| 100 |
+
if intermediary_steps:
|
| 101 |
+
with st.expander("Ver Passos Intermediários"):
|
| 102 |
+
if intermediary_steps[0] == 'erro':
|
| 103 |
+
st.markdown("## ERROR...\n")
|
| 104 |
+
else:
|
| 105 |
+
st.markdown("## > Entering new AgentExecutor chain...\n")
|
| 106 |
+
for index, step in enumerate(intermediary_steps, start=1):
|
| 107 |
+
# action = step[0].get('tool', 'Unknown')
|
| 108 |
+
action = step[0].tool if hasattr(step[0], 'tool') else 'Unknown'
|
| 109 |
+
# action_input = step[0].get('tool_input', 'N/A')
|
| 110 |
+
# log = step[0].get('log', 'No log available')
|
| 111 |
+
action_input = step[0].tool_input if hasattr(step[0], 'tool_input') else 'N/A'
|
| 112 |
+
log = step[0].log if hasattr(step[0], 'log') else 'No log available'
|
| 113 |
+
st.markdown(f"**Passo {index}:**")
|
| 114 |
+
st.markdown(f" **Ação:** `{action}`")
|
| 115 |
+
st.markdown(f" **Entrada da Ação:** `{action_input}`")
|
| 116 |
+
st.code(log, language='json')
|
| 117 |
+
st.markdown("---")
|
| 118 |
+
# Adiciona a ação "Final Answer" ao final dos passos
|
| 119 |
+
st.markdown("**Ação:** Final Answer")
|
| 120 |
+
st.markdown(f"**Entrada da Ação:** `{msg}`")
|
| 121 |
+
st.markdown("## > Finished chain.")
|
| 122 |
+
else:
|
| 123 |
+
with st.expander("Ver Passos Intermediários"):
|
| 124 |
+
st.markdown("#### > Entering new AgentExecutor chain...\n")
|
| 125 |
+
st.markdown("**Ação:** Final Answer")
|
| 126 |
+
st.markdown(f"**Entrada da Ação:** `{msg}`")
|
| 127 |
+
st.markdown("#### > Finished chain...")
|
| 128 |
+
|
| 129 |
+
def add_faq_question_to_chat(question):
|
| 130 |
+
st.session_state["faq_question"] = question
|
| 131 |
+
|
| 132 |
+
# Barra lateral com perguntas frequentes
|
| 133 |
+
with st.sidebar:
|
| 134 |
+
st.write("## Perguntas Frequentes")
|
| 135 |
+
for index, item in enumerate(faq_data, start=1):
|
| 136 |
+
question_with_number = f"{index}\. {item['question']}"
|
| 137 |
+
expander = st.expander(question_with_number, expanded=False)
|
| 138 |
+
|
| 139 |
+
with expander:
|
| 140 |
+
st.write(item["answer"])
|
| 141 |
+
button_key = f"button_{index}"
|
| 142 |
+
if st.button("Enviar esta pergunta", key=button_key):
|
| 143 |
+
st.session_state['selected_question'] = item["question"]
|
| 144 |
+
|
| 145 |
+
if 'selected_question' in st.session_state and st.session_state['selected_question']:
|
| 146 |
+
add_faq_question_to_chat(st.session_state['selected_question'])
|
| 147 |
+
del st.session_state['selected_question']
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
if st.session_state["faq_question"]:
|
| 152 |
+
process_question(st.session_state["faq_question"])
|
| 153 |
+
st.session_state["faq_question"] = None
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
if prompt := st.chat_input():
|
| 157 |
+
process_question(prompt)
|