Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -16,71 +16,171 @@ import soundfile as sf # Audio file handling
|
|
| 16 |
import sentencepiece # Tokenization dependency
|
| 17 |
|
| 18 |
##########################################
|
| 19 |
-
#
|
| 20 |
##########################################
|
| 21 |
-
st.set_page_config(
|
| 22 |
-
page_title="π Just Comment -
|
| 23 |
page_icon="π¬",
|
| 24 |
-
layout="centered"
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
##########################################
|
| 28 |
-
#
|
| 29 |
##########################################
|
| 30 |
-
@st.cache_resource
|
| 31 |
def load_models():
|
| 32 |
-
"""Load all
|
| 33 |
return {
|
| 34 |
-
|
|
|
|
| 35 |
"text-classification",
|
| 36 |
model="Thea231/jhartmann_emotion_finetuning"
|
| 37 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
'tts_processor': SpeechT5Processor.from_pretrained("microsoft/speecht5_tts"),
|
| 39 |
'tts_model': SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts"),
|
| 40 |
'tts_vocoder': SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan"),
|
| 41 |
-
|
| 42 |
-
|
| 43 |
'speaker_embeddings': torch.tensor(
|
| 44 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
| 45 |
).unsqueeze(0)
|
| 46 |
}
|
| 47 |
|
| 48 |
##########################################
|
| 49 |
-
#
|
| 50 |
##########################################
|
| 51 |
-
def
|
| 52 |
-
"""
|
| 53 |
-
st.title("π
|
| 54 |
-
st.
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
|
| 62 |
##########################################
|
| 63 |
-
#
|
| 64 |
-
# Keep other functions unchanged as previous version
|
| 65 |
##########################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
##########################################
|
| 68 |
-
# Main Application
|
| 69 |
##########################################
|
| 70 |
def main():
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
| 74 |
|
|
|
|
| 75 |
if user_input:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
| 82 |
with st.spinner("π Generating voice response..."):
|
| 83 |
-
audio_file =
|
| 84 |
st.audio(audio_file, format="audio/wav")
|
| 85 |
|
| 86 |
if __name__ == "__main__":
|
|
|
|
| 16 |
import sentencepiece # Tokenization dependency
|
| 17 |
|
| 18 |
##########################################
|
| 19 |
+
# Initial configuration (MUST be first)
|
| 20 |
##########################################
|
| 21 |
+
st.set_page_config(
|
| 22 |
+
page_title="π Just Comment - AI Response Generator",
|
| 23 |
page_icon="π¬",
|
| 24 |
+
layout="centered",
|
| 25 |
+
initial_sidebar_state="collapsed"
|
| 26 |
)
|
| 27 |
|
| 28 |
##########################################
|
| 29 |
+
# Global model loading with caching
|
| 30 |
##########################################
|
| 31 |
+
@st.cache_resource(show_spinner=False)
|
| 32 |
def load_models():
|
| 33 |
+
"""Load and cache all ML models"""
|
| 34 |
return {
|
| 35 |
+
# Emotion classifier
|
| 36 |
+
'emotion': pipeline(
|
| 37 |
"text-classification",
|
| 38 |
model="Thea231/jhartmann_emotion_finetuning"
|
| 39 |
),
|
| 40 |
+
|
| 41 |
+
# Text generation models
|
| 42 |
+
'textgen_tokenizer': AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
|
| 43 |
+
'textgen_model': AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B"),
|
| 44 |
+
|
| 45 |
+
# TTS components
|
| 46 |
'tts_processor': SpeechT5Processor.from_pretrained("microsoft/speecht5_tts"),
|
| 47 |
'tts_model': SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts"),
|
| 48 |
'tts_vocoder': SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan"),
|
| 49 |
+
|
| 50 |
+
# Speaker embeddings
|
| 51 |
'speaker_embeddings': torch.tensor(
|
| 52 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
| 53 |
).unsqueeze(0)
|
| 54 |
}
|
| 55 |
|
| 56 |
##########################################
|
| 57 |
+
# UI Components
|
| 58 |
##########################################
|
| 59 |
+
def render_interface():
|
| 60 |
+
"""Create user interface elements"""
|
| 61 |
+
st.title("π AI Customer Response Generator")
|
| 62 |
+
st.caption("Analyzes feedback and generates tailored responses")
|
| 63 |
+
|
| 64 |
+
return st.text_area(
|
| 65 |
+
"π Paste customer feedback here:",
|
| 66 |
+
placeholder="The product arrived damaged...",
|
| 67 |
+
height=150,
|
| 68 |
+
key="user_input"
|
| 69 |
+
)
|
| 70 |
|
| 71 |
##########################################
|
| 72 |
+
# Core Logic Components
|
|
|
|
| 73 |
##########################################
|
| 74 |
+
def analyze_emotion(text, classifier):
|
| 75 |
+
"""Determine dominant emotion with confidence threshold"""
|
| 76 |
+
results = classifier(text, return_all_scores=True)[0]
|
| 77 |
+
top_emotion = max(results, key=lambda x: x['score'])
|
| 78 |
+
return top_emotion if top_emotion['score'] > 0.6 else {'label': 'neutral', 'score': 1.0}
|
| 79 |
+
|
| 80 |
+
def generate_prompt(text, emotion):
|
| 81 |
+
"""Create structured prompts for different emotions"""
|
| 82 |
+
prompt_templates = {
|
| 83 |
+
"anger": (
|
| 84 |
+
"Customer complaint: {input}\n"
|
| 85 |
+
"Respond with:\n"
|
| 86 |
+
"1. Apology\n2. Solution steps\n3. Compensation offer\n"
|
| 87 |
+
"Response:"
|
| 88 |
+
),
|
| 89 |
+
"joy": (
|
| 90 |
+
"Positive feedback: {input}\n"
|
| 91 |
+
"Respond with:\n"
|
| 92 |
+
"1. Appreciation\n2. Highlight strengths\n3. Loyalty benefits\n"
|
| 93 |
+
"Response:"
|
| 94 |
+
),
|
| 95 |
+
"neutral": (
|
| 96 |
+
"Customer comment: {input}\n"
|
| 97 |
+
"Respond with:\n"
|
| 98 |
+
"1. Acknowledge feedback\n2. Offer assistance\n3. Next steps\n"
|
| 99 |
+
"Response:"
|
| 100 |
+
)
|
| 101 |
+
}
|
| 102 |
+
return prompt_templates.get(emotion.lower(), prompt_templates['neutral']).format(input=text)
|
| 103 |
+
|
| 104 |
+
def process_response(output_text):
|
| 105 |
+
"""Ensure response quality and proper formatting"""
|
| 106 |
+
# Remove incomplete sentences
|
| 107 |
+
if '.' in output_text:
|
| 108 |
+
output_text = output_text.rsplit('.', 1)[0] + '.'
|
| 109 |
+
|
| 110 |
+
# Length constraints
|
| 111 |
+
output_text = output_text[:300].strip() # Hard limit at 300 characters
|
| 112 |
+
|
| 113 |
+
# Fallback for short responses
|
| 114 |
+
if len(output_text) < 50:
|
| 115 |
+
return "Thank you for your feedback. We'll review this and contact you shortly."
|
| 116 |
+
|
| 117 |
+
return output_text
|
| 118 |
+
|
| 119 |
+
def generate_text_response(user_input, models):
|
| 120 |
+
"""Generate and validate text response"""
|
| 121 |
+
# Emotion analysis
|
| 122 |
+
emotion = analyze_emotion(user_input, models['emotion'])
|
| 123 |
+
|
| 124 |
+
# Prompt engineering
|
| 125 |
+
prompt = generate_prompt(user_input, emotion['label'])
|
| 126 |
+
|
| 127 |
+
# Text generation
|
| 128 |
+
inputs = models['textgen_tokenizer'](prompt, return_tensors="pt")
|
| 129 |
+
outputs = models['textgen_model'].generate(
|
| 130 |
+
inputs.input_ids,
|
| 131 |
+
max_new_tokens=200,
|
| 132 |
+
temperature=0.7,
|
| 133 |
+
do_sample=True,
|
| 134 |
+
top_p=0.9
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Decode and process
|
| 138 |
+
full_response = models['textgen_tokenizer'].decode(outputs[0], skip_special_tokens=True)
|
| 139 |
+
return process_response(full_response.split("Response:")[-1].strip())
|
| 140 |
+
|
| 141 |
+
def generate_audio_response(text, models):
|
| 142 |
+
"""Convert text to speech"""
|
| 143 |
+
# Process text input
|
| 144 |
+
inputs = models['tts_processor'](text=text, return_tensors="pt")
|
| 145 |
+
|
| 146 |
+
# Generate spectrogram
|
| 147 |
+
spectrogram = models['tts_model'].generate_speech(
|
| 148 |
+
inputs["input_ids"],
|
| 149 |
+
models['speaker_embeddings']
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# Generate waveform
|
| 153 |
+
with torch.no_grad():
|
| 154 |
+
waveform = models['tts_vocoder'](spectrogram)
|
| 155 |
+
|
| 156 |
+
# Save and return audio
|
| 157 |
+
sf.write("response.wav", waveform.numpy(), samplerate=16000)
|
| 158 |
+
return "response.wav"
|
| 159 |
|
| 160 |
##########################################
|
| 161 |
+
# Main Application Flow
|
| 162 |
##########################################
|
| 163 |
def main():
|
| 164 |
+
# Load models once
|
| 165 |
+
ml_models = load_models()
|
| 166 |
+
|
| 167 |
+
# Render UI
|
| 168 |
+
user_input = render_interface()
|
| 169 |
|
| 170 |
+
# Process input
|
| 171 |
if user_input:
|
| 172 |
+
# Text generation
|
| 173 |
+
with st.status("π Analyzing feedback...", expanded=True) as status:
|
| 174 |
+
text_response = generate_text_response(user_input, ml_models)
|
| 175 |
+
status.update(label="β
Analysis Complete", state="complete")
|
| 176 |
+
|
| 177 |
+
# Display text response
|
| 178 |
+
st.subheader("π Generated Response")
|
| 179 |
+
st.markdown(f"```\n{text_response}\n```")
|
| 180 |
|
| 181 |
+
# Audio generation
|
| 182 |
with st.spinner("π Generating voice response..."):
|
| 183 |
+
audio_file = generate_audio_response(text_response, ml_models)
|
| 184 |
st.audio(audio_file, format="audio/wav")
|
| 185 |
|
| 186 |
if __name__ == "__main__":
|