Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,13 +13,32 @@ from transformers import (
|
|
| 13 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
| 14 |
import torch # For tensor operations
|
| 15 |
import soundfile as sf # For saving audio as .wav files
|
|
|
|
| 16 |
|
| 17 |
##########################################
|
| 18 |
# Streamlit application title and input
|
| 19 |
##########################################
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
##########################################
|
| 25 |
# Step 1: Sentiment Analysis Function
|
|
@@ -32,11 +51,11 @@ def analyze_dominant_emotion(user_review):
|
|
| 32 |
"text-classification",
|
| 33 |
model="Thea231/jhartmann_emotion_finetuning",
|
| 34 |
return_all_scores=True
|
| 35 |
-
) # Load
|
| 36 |
|
| 37 |
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review
|
| 38 |
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence
|
| 39 |
-
return dominant_emotion
|
| 40 |
|
| 41 |
##########################################
|
| 42 |
# Step 2: Response Generation Function
|
|
@@ -45,11 +64,11 @@ def response_gen(user_review):
|
|
| 45 |
"""
|
| 46 |
Generate a response based on the sentiment of the user's review.
|
| 47 |
"""
|
| 48 |
-
#
|
| 49 |
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
|
| 50 |
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
|
| 51 |
|
| 52 |
-
# Define response templates for each emotion
|
| 53 |
emotion_prompts = {
|
| 54 |
"anger": (
|
| 55 |
"Customer complaint: '{review}'\n\n"
|
|
@@ -67,7 +86,53 @@ def response_gen(user_review):
|
|
| 67 |
"- Invites them to explore loyalty programs\n\n"
|
| 68 |
"Response:"
|
| 69 |
),
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
}
|
| 72 |
|
| 73 |
# Format the prompt with the user's review
|
|
|
|
| 13 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
| 14 |
import torch # For tensor operations
|
| 15 |
import soundfile as sf # For saving audio as .wav files
|
| 16 |
+
import sentencepiece # Required by SpeechT5Processor for tokenization
|
| 17 |
|
| 18 |
##########################################
|
| 19 |
# Streamlit application title and input
|
| 20 |
##########################################
|
| 21 |
+
|
| 22 |
+
# Display a deep blue title in a large, visually appealing font
|
| 23 |
+
st.markdown(
|
| 24 |
+
"<h1 style='text-align: center; color: #00008B; font-size: 50px;'>🚀 Just Comment</h1>",
|
| 25 |
+
unsafe_allow_html=True
|
| 26 |
+
) # Set deep blue title
|
| 27 |
+
|
| 28 |
+
# Display a gentle, warm subtitle below the title
|
| 29 |
+
st.markdown(
|
| 30 |
+
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend~</h3>",
|
| 31 |
+
unsafe_allow_html=True
|
| 32 |
+
) # Set a friendly subtitle
|
| 33 |
+
|
| 34 |
+
# Add a text area for user input with placeholder and tooltip
|
| 35 |
+
text = st.text_area(
|
| 36 |
+
"Enter your comment",
|
| 37 |
+
placeholder="Type something here...",
|
| 38 |
+
height=100,
|
| 39 |
+
help="Write a comment you would like us to respond to!" # Provide tooltip
|
| 40 |
+
) # Create text input field
|
| 41 |
+
|
| 42 |
|
| 43 |
##########################################
|
| 44 |
# Step 1: Sentiment Analysis Function
|
|
|
|
| 51 |
"text-classification",
|
| 52 |
model="Thea231/jhartmann_emotion_finetuning",
|
| 53 |
return_all_scores=True
|
| 54 |
+
) # Load our fine-tuned emotion classification model
|
| 55 |
|
| 56 |
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review
|
| 57 |
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence
|
| 58 |
+
return dominant_emotion # Return the dominant emotion (as a dict with label and score)
|
| 59 |
|
| 60 |
##########################################
|
| 61 |
# Step 2: Response Generation Function
|
|
|
|
| 64 |
"""
|
| 65 |
Generate a response based on the sentiment of the user's review.
|
| 66 |
"""
|
| 67 |
+
# Get dominant emotion for the input
|
| 68 |
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
|
| 69 |
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
|
| 70 |
|
| 71 |
+
# Define response templates for each emotion
|
| 72 |
emotion_prompts = {
|
| 73 |
"anger": (
|
| 74 |
"Customer complaint: '{review}'\n\n"
|
|
|
|
| 86 |
"- Invites them to explore loyalty programs\n\n"
|
| 87 |
"Response:"
|
| 88 |
),
|
| 89 |
+
"disgust": (
|
| 90 |
+
"Customer quality concern: '{review}'\n\n"
|
| 91 |
+
"As a customer service representative, craft a response that:\n"
|
| 92 |
+
"- Immediately acknowledges the product issue.\n"
|
| 93 |
+
"- Explains measures taken in quality control.\n"
|
| 94 |
+
"- Provides clear return/replacement instructions.\n"
|
| 95 |
+
"- Offers a goodwill gesture (1-3 sentences).\n\n"
|
| 96 |
+
"Response:"
|
| 97 |
+
),
|
| 98 |
+
"fear": (
|
| 99 |
+
"Customer safety concern: '{review}'\n\n"
|
| 100 |
+
"As a customer service representative, craft a reassuring response that:\n"
|
| 101 |
+
"- Directly addresses the safety worries.\n"
|
| 102 |
+
"- References relevant certifications or standards.\n"
|
| 103 |
+
"- Offers a dedicated support contact.\n"
|
| 104 |
+
"- Provides a satisfaction guarantee (1-3 sentences).\n\n"
|
| 105 |
+
"Response:"
|
| 106 |
+
),
|
| 107 |
+
"neutral": (
|
| 108 |
+
"Customer feedback: '{review}'\n\n"
|
| 109 |
+
"As a customer service representative, craft a balanced response that:\n"
|
| 110 |
+
"- Provides additional relevant product information.\n"
|
| 111 |
+
"- Highlights key service features.\n"
|
| 112 |
+
"- Politely requests more detailed feedback.\n"
|
| 113 |
+
"- Maintains a professional tone (1-3 sentences).\n\n"
|
| 114 |
+
"Response:"
|
| 115 |
+
),
|
| 116 |
+
"sadness": (
|
| 117 |
+
"Customer disappointment: '{review}'\n\n"
|
| 118 |
+
"As a customer service representative, craft an empathetic response that:\n"
|
| 119 |
+
"- Shows genuine understanding of the issue.\n"
|
| 120 |
+
"- Proposes a personalized recovery solution.\n"
|
| 121 |
+
"- Offers extended support options.\n"
|
| 122 |
+
"- Maintains a positive outlook (1-3 sentences).\n\n"
|
| 123 |
+
"Response:"
|
| 124 |
+
),
|
| 125 |
+
"surprise": (
|
| 126 |
+
"Customer enthusiastic feedback: '{review}'\n\n"
|
| 127 |
+
"As a customer service representative, craft a response that:\n"
|
| 128 |
+
"- Matches the customer's positive energy.\n"
|
| 129 |
+
"- Highlights unexpected product benefits.\n"
|
| 130 |
+
"- Invites the customer to join community events or programs.\n"
|
| 131 |
+
"- Maintains the brand's voice (1-3 sentences).\n\n"
|
| 132 |
+
"Response:"
|
| 133 |
+
),
|
| 134 |
+
|
| 135 |
+
|
| 136 |
}
|
| 137 |
|
| 138 |
# Format the prompt with the user's review
|