Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@
|
|
| 2 |
# Step 0: Essential imports
|
| 3 |
##########################################
|
| 4 |
import streamlit as st # Web interface
|
| 5 |
-
from transformers import ( # AI components
|
| 6 |
pipeline,
|
| 7 |
SpeechT5Processor,
|
| 8 |
SpeechT5ForTextToSpeech,
|
|
@@ -10,14 +10,15 @@ from transformers import ( # AI components
|
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
AutoTokenizer
|
| 12 |
)
|
| 13 |
-
from datasets import load_dataset #
|
| 14 |
-
import torch #
|
| 15 |
-
import soundfile as sf #
|
|
|
|
| 16 |
|
| 17 |
##########################################
|
| 18 |
# Initial configuration (MUST BE FIRST)
|
| 19 |
##########################################
|
| 20 |
-
st.set_page_config( # Set page
|
| 21 |
page_title="Just Comment",
|
| 22 |
page_icon="π¬",
|
| 23 |
layout="centered"
|
|
@@ -28,10 +29,10 @@ st.set_page_config( # Set page config first
|
|
| 28 |
##########################################
|
| 29 |
@st.cache_resource(show_spinner=False)
|
| 30 |
def _load_components():
|
| 31 |
-
"""Load and cache all models with hardware optimization"""
|
| 32 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
|
| 34 |
-
#
|
| 35 |
emotion_pipe = pipeline(
|
| 36 |
"text-classification",
|
| 37 |
model="Thea231/jhartmann_emotion_finetuning",
|
|
@@ -39,15 +40,21 @@ def _load_components():
|
|
| 39 |
truncation=True
|
| 40 |
)
|
| 41 |
|
| 42 |
-
#
|
| 43 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
# TTS
|
| 51 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 52 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
| 53 |
"microsoft/speecht5_tts",
|
|
@@ -58,7 +65,7 @@ def _load_components():
|
|
| 58 |
torch_dtype=torch.float16
|
| 59 |
).to(device)
|
| 60 |
|
| 61 |
-
#
|
| 62 |
speaker_emb = torch.tensor(
|
| 63 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
| 64 |
).unsqueeze(0).to(device)
|
|
@@ -78,10 +85,10 @@ def _load_components():
|
|
| 78 |
# User interface components
|
| 79 |
##########################################
|
| 80 |
def _show_interface():
|
| 81 |
-
"""Render input interface"""
|
| 82 |
-
st.title("Just Comment")
|
| 83 |
-
st.markdown("### I'm listening to you, my friendο½")
|
| 84 |
-
return st.text_area( #
|
| 85 |
"π Enter your comment:",
|
| 86 |
placeholder="Share your thoughts...",
|
| 87 |
height=150,
|
|
@@ -92,83 +99,93 @@ def _show_interface():
|
|
| 92 |
# Core processing functions
|
| 93 |
##########################################
|
| 94 |
def _fast_emotion(text, analyzer):
|
| 95 |
-
"""
|
| 96 |
-
result = analyzer(text[:256], return_all_scores=True)[0] #
|
| 97 |
-
|
| 98 |
return max(
|
| 99 |
-
(e for e in result if e['label'].lower() in
|
| 100 |
key=lambda x: x['score'],
|
| 101 |
default={'label': 'neutral', 'score': 0}
|
| 102 |
)
|
| 103 |
|
| 104 |
def _build_prompt(text, emotion):
|
| 105 |
-
"""
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
def _generate_response(text, models):
|
| 109 |
-
"""
|
| 110 |
-
#
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
prompt
|
| 115 |
-
|
| 116 |
-
# Generate text
|
| 117 |
inputs = models["text_tokenizer"](
|
| 118 |
prompt,
|
| 119 |
return_tensors="pt",
|
| 120 |
max_length=100,
|
| 121 |
truncation=True
|
| 122 |
).to(models["device"])
|
| 123 |
-
|
| 124 |
output = models["text_model"].generate(
|
| 125 |
inputs.input_ids,
|
| 126 |
-
max_new_tokens=
|
|
|
|
| 127 |
temperature=0.7,
|
| 128 |
top_p=0.9,
|
| 129 |
do_sample=True,
|
| 130 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
| 131 |
)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
response
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
def _text_to_speech(text, models):
|
| 138 |
-
"""
|
| 139 |
-
inputs = models["tts_processor"](
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
audio = models["tts_vocoder"](spectrogram)
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
return "output.wav"
|
| 147 |
|
| 148 |
##########################################
|
| 149 |
# Main application flow
|
| 150 |
##########################################
|
| 151 |
def main():
|
| 152 |
-
"""Primary execution controller"""
|
| 153 |
-
# Load components
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
if user_input:
|
| 160 |
-
# Text generation
|
| 161 |
-
with st.spinner("π Analyzing..."):
|
| 162 |
-
response = _generate_response(user_input, components)
|
| 163 |
-
|
| 164 |
-
# Display result
|
| 165 |
st.subheader("π Response")
|
| 166 |
-
st.markdown(
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
|
| 173 |
if __name__ == "__main__":
|
| 174 |
-
main() #
|
|
|
|
| 2 |
# Step 0: Essential imports
|
| 3 |
##########################################
|
| 4 |
import streamlit as st # Web interface
|
| 5 |
+
from transformers import ( # AI components: emotion analysis, text-to-speech, text generation
|
| 6 |
pipeline,
|
| 7 |
SpeechT5Processor,
|
| 8 |
SpeechT5ForTextToSpeech,
|
|
|
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
AutoTokenizer
|
| 12 |
)
|
| 13 |
+
from datasets import load_dataset # To load speaker embeddings dataset
|
| 14 |
+
import torch # For tensor operations
|
| 15 |
+
import soundfile as sf # For audio file writing
|
| 16 |
+
import sentencepiece # Required for SpeechT5Processor tokenization
|
| 17 |
|
| 18 |
##########################################
|
| 19 |
# Initial configuration (MUST BE FIRST)
|
| 20 |
##########################################
|
| 21 |
+
st.set_page_config( # Set page configuration
|
| 22 |
page_title="Just Comment",
|
| 23 |
page_icon="π¬",
|
| 24 |
layout="centered"
|
|
|
|
| 29 |
##########################################
|
| 30 |
@st.cache_resource(show_spinner=False)
|
| 31 |
def _load_components():
|
| 32 |
+
"""Load and cache all models with hardware optimization."""
|
| 33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Detect available device
|
| 34 |
|
| 35 |
+
# Load emotion classifier (fast; input truncated)
|
| 36 |
emotion_pipe = pipeline(
|
| 37 |
"text-classification",
|
| 38 |
model="Thea231/jhartmann_emotion_finetuning",
|
|
|
|
| 40 |
truncation=True
|
| 41 |
)
|
| 42 |
|
| 43 |
+
# Load text generation components with conditional device mapping
|
| 44 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
| 45 |
+
if device == "cuda":
|
| 46 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
"Qwen/Qwen1.5-0.5B",
|
| 48 |
+
torch_dtype=torch.float16,
|
| 49 |
+
device_map="auto"
|
| 50 |
+
)
|
| 51 |
+
else:
|
| 52 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
+
"Qwen/Qwen1.5-0.5B",
|
| 54 |
+
torch_dtype=torch.float16
|
| 55 |
+
).to(device)
|
| 56 |
|
| 57 |
+
# Load TTS components
|
| 58 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 59 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
| 60 |
"microsoft/speecht5_tts",
|
|
|
|
| 65 |
torch_dtype=torch.float16
|
| 66 |
).to(device)
|
| 67 |
|
| 68 |
+
# Load a pre-trained speaker embedding (neutral voice)
|
| 69 |
speaker_emb = torch.tensor(
|
| 70 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
| 71 |
).unsqueeze(0).to(device)
|
|
|
|
| 85 |
# User interface components
|
| 86 |
##########################################
|
| 87 |
def _show_interface():
|
| 88 |
+
"""Render input interface."""
|
| 89 |
+
st.title("π Just Comment") # Display title with rocket emoji
|
| 90 |
+
st.markdown("### I'm listening to you, my friendο½") # Display friendly subtitle
|
| 91 |
+
return st.text_area( # Return user comment input
|
| 92 |
"π Enter your comment:",
|
| 93 |
placeholder="Share your thoughts...",
|
| 94 |
height=150,
|
|
|
|
| 99 |
# Core processing functions
|
| 100 |
##########################################
|
| 101 |
def _fast_emotion(text, analyzer):
|
| 102 |
+
"""Rapidly detect dominant emotion using a truncated input."""
|
| 103 |
+
result = analyzer(text[:256], return_all_scores=True)[0] # Analyze first 256 characters
|
| 104 |
+
valid_emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
|
| 105 |
return max(
|
| 106 |
+
(e for e in result if e['label'].lower() in valid_emotions),
|
| 107 |
key=lambda x: x['score'],
|
| 108 |
default={'label': 'neutral', 'score': 0}
|
| 109 |
)
|
| 110 |
|
| 111 |
def _build_prompt(text, emotion):
|
| 112 |
+
"""Build a continuous prompt (1β3 sentences) based on detected emotion."""
|
| 113 |
+
templates = {
|
| 114 |
+
"sadness": "I sensed sadness in your comment: {text}. We are sorry and ready to support you.",
|
| 115 |
+
"joy": "Your comment shows joy: {text}. Thank you for your positive feedback; we are excited to serve you better.",
|
| 116 |
+
"love": "Your comment expresses love: {text}. We appreciate your heartfelt words and value our connection.",
|
| 117 |
+
"anger": "I understand your comment reflects anger: {text}. Please accept our sincere apologies as we address your concerns.",
|
| 118 |
+
"fear": "It seems you feel fear: {text}. Rest assured, your safety and satisfaction are our top priorities.",
|
| 119 |
+
"surprise": "Your comment exudes surprise: {text}. We are pleased by your experience and will strive to exceed your expectations.",
|
| 120 |
+
"neutral": "Thank you for your comment: {text}. We are committed to providing you with excellent service."
|
| 121 |
+
}
|
| 122 |
+
# Use the template corresponding to the detected emotion (default to neutral)
|
| 123 |
+
return templates.get(emotion.lower(), templates["neutral"]).format(text=text[:200])
|
| 124 |
|
| 125 |
def _generate_response(text, models):
|
| 126 |
+
"""Generate a response by combining emotion detection and text generation."""
|
| 127 |
+
# Detect emotion quickly
|
| 128 |
+
detected_emotion = _fast_emotion(text, models["emotion"])
|
| 129 |
+
# Build prompt based on the detected emotion in a continuous format
|
| 130 |
+
prompt = _build_prompt(text, detected_emotion["label"])
|
| 131 |
+
print(f"Generated prompt: {prompt}") # Debug print with f-string
|
| 132 |
+
# Tokenize and generate response using the Qwen model
|
|
|
|
| 133 |
inputs = models["text_tokenizer"](
|
| 134 |
prompt,
|
| 135 |
return_tensors="pt",
|
| 136 |
max_length=100,
|
| 137 |
truncation=True
|
| 138 |
).to(models["device"])
|
|
|
|
| 139 |
output = models["text_model"].generate(
|
| 140 |
inputs.input_ids,
|
| 141 |
+
max_new_tokens=120, # Constrain length for 50-200 tokens response
|
| 142 |
+
min_length=50,
|
| 143 |
temperature=0.7,
|
| 144 |
top_p=0.9,
|
| 145 |
do_sample=True,
|
| 146 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
| 147 |
)
|
| 148 |
+
input_len = inputs.input_ids.shape[1] # Length of prompt tokens
|
| 149 |
+
full_text = models["text_tokenizer"].decode(output[0], skip_special_tokens=True)
|
| 150 |
+
# Extract only the generated response portion (after any "Response:" marker if present)
|
| 151 |
+
response = full_text.split("Response:")[-1].strip()
|
| 152 |
+
print(f"Generated response: {response}") # Debug print with f-string
|
| 153 |
+
return response[:200] # Return response truncated to around 200 characters as an approximation
|
| 154 |
|
| 155 |
def _text_to_speech(text, models):
|
| 156 |
+
"""Convert the generated response text to speech and return the audio file path."""
|
| 157 |
+
inputs = models["tts_processor"](
|
| 158 |
+
text=text[:150], # Limit TTS input to 150 characters for speed
|
| 159 |
+
return_tensors="pt"
|
| 160 |
+
).to(models["device"])
|
| 161 |
+
with torch.inference_mode(): # Accelerate inference
|
| 162 |
+
spectrogram = models["tts_model"].generate_speech(
|
| 163 |
+
inputs["input_ids"],
|
| 164 |
+
models["speaker_emb"]
|
| 165 |
+
)
|
| 166 |
audio = models["tts_vocoder"](spectrogram)
|
| 167 |
+
sf.write("output.wav", audio.cpu().numpy(), 16000) # Save the audio file with 16kHz sample rate
|
| 168 |
+
return "output.wav" # Return the path to the audio file
|
|
|
|
| 169 |
|
| 170 |
##########################################
|
| 171 |
# Main application flow
|
| 172 |
##########################################
|
| 173 |
def main():
|
| 174 |
+
"""Primary execution controller."""
|
| 175 |
+
models = _load_components() # Load all necessary models and components
|
| 176 |
+
user_input = _show_interface() # Render the input interface and get user comment
|
| 177 |
+
if user_input: # Proceed only if a comment is provided
|
| 178 |
+
with st.spinner("π Generating response..."):
|
| 179 |
+
generated_response = _generate_response(user_input, models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
st.subheader("π Response")
|
| 181 |
+
st.markdown(
|
| 182 |
+
f"<p style='color:#3498DB; font-size:20px;'>{generated_response}</p>",
|
| 183 |
+
unsafe_allow_html=True
|
| 184 |
+
) # Display the generated response in styled format
|
| 185 |
+
with st.spinner("π Synthesizing audio..."):
|
| 186 |
+
audio_file = _text_to_speech(generated_response, models)
|
| 187 |
+
st.audio(audio_file, format="audio/wav", start_time=0) # Embed auto-playing audio player
|
| 188 |
+
print(f"Final generated response: {generated_response}") # Debug print with f-string
|
| 189 |
|
| 190 |
if __name__ == "__main__":
|
| 191 |
+
main() # Call the main function
|