Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
##########################################
|
| 2 |
# Step 0: Import required libraries
|
| 3 |
##########################################
|
| 4 |
-
import streamlit as st # For building the web application
|
| 5 |
from transformers import (
|
| 6 |
pipeline,
|
| 7 |
SpeechT5Processor,
|
|
@@ -9,70 +9,50 @@ from transformers import (
|
|
| 9 |
SpeechT5HifiGan,
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
AutoTokenizer
|
| 12 |
-
) # For
|
| 13 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
| 14 |
import torch # For tensor operations
|
| 15 |
import soundfile as sf # For saving audio as .wav files
|
| 16 |
-
import sentencepiece # Required by SpeechT5Processor for tokenization
|
| 17 |
-
|
| 18 |
|
| 19 |
##########################################
|
| 20 |
# Streamlit application title and input
|
| 21 |
##########################################
|
| 22 |
-
|
| 23 |
-
st.
|
| 24 |
-
|
| 25 |
-
unsafe_allow_html=True
|
| 26 |
-
) # Set deep blue title
|
| 27 |
-
|
| 28 |
-
# Display a gentle, warm subtitle below the title
|
| 29 |
-
st.markdown(
|
| 30 |
-
"<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend~</h3>",
|
| 31 |
-
unsafe_allow_html=True
|
| 32 |
-
) # Set a friendly subtitle
|
| 33 |
-
|
| 34 |
-
# Add a text area for user input with placeholder and tooltip
|
| 35 |
-
text = st.text_area(
|
| 36 |
-
"Enter your comment",
|
| 37 |
-
placeholder="Type something here...",
|
| 38 |
-
height=100,
|
| 39 |
-
help="Write a comment you would like us to respond to!" # Provide tooltip
|
| 40 |
-
) # Create text input field
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
##########################################
|
| 45 |
# Step 1: Sentiment Analysis Function
|
| 46 |
##########################################
|
| 47 |
def analyze_dominant_emotion(user_review):
|
| 48 |
"""
|
| 49 |
-
Analyze the dominant emotion in the user's review using
|
| 50 |
"""
|
| 51 |
emotion_classifier = pipeline(
|
| 52 |
"text-classification",
|
| 53 |
model="Thea231/jhartmann_emotion_finetuning",
|
| 54 |
return_all_scores=True
|
| 55 |
-
) # Load
|
| 56 |
-
|
| 57 |
-
emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the user input
|
| 58 |
-
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Extract the emotion with the highest confidence score
|
| 59 |
-
return dominant_emotion # Return the dominant emotion with its label and score
|
| 60 |
-
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
##########################################
|
| 63 |
# Step 2: Response Generation Function
|
| 64 |
##########################################
|
| 65 |
def response_gen(user_review):
|
| 66 |
"""
|
| 67 |
-
Generate a
|
| 68 |
"""
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
emotion_prompts = {
|
| 74 |
"anger": (
|
| 75 |
-
|
| 76 |
"As a customer service representative, write a response that:\n"
|
| 77 |
"- Sincerely apologizes for the issue\n"
|
| 78 |
"- Explains how the issue will be resolved\n"
|
|
@@ -80,69 +60,69 @@ def response_gen(user_review):
|
|
| 80 |
"Response:"
|
| 81 |
),
|
| 82 |
"joy": (
|
| 83 |
-
|
| 84 |
"As a customer service representative, write a positive response that:\n"
|
| 85 |
"- Thanks the customer for their feedback\n"
|
| 86 |
"- Acknowledges both positive and constructive comments\n"
|
| 87 |
"- Invites them to explore loyalty programs\n\n"
|
| 88 |
"Response:"
|
| 89 |
),
|
| 90 |
-
# Add other emotions
|
| 91 |
}
|
| 92 |
-
|
| 93 |
-
#
|
| 94 |
-
prompt = emotion_prompts.get(emotion_label,
|
| 95 |
-
|
| 96 |
-
# Load a
|
| 97 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 98 |
-
model = AutoModelForCausalLM.from_pretrained("
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
if len(response.split()) < 50 or len(response.split()) > 200:
|
| 106 |
-
response = f"Dear customer, thank you for your feedback regarding '{user_review}'. We appreciate your patience and will ensure improvements based on your valuable input." # Fallback response
|
| 107 |
-
|
| 108 |
-
return response # Return the generated response
|
| 109 |
|
| 110 |
##########################################
|
| 111 |
# Step 3: Text-to-Speech Conversion Function
|
| 112 |
##########################################
|
| 113 |
def sound_gen(response):
|
| 114 |
"""
|
| 115 |
-
Convert the generated
|
| 116 |
"""
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
##########################################
|
| 135 |
# Main Function
|
| 136 |
##########################################
|
| 137 |
def main():
|
| 138 |
"""
|
| 139 |
-
Main function to
|
| 140 |
"""
|
| 141 |
-
if text: # Check if the user
|
| 142 |
-
response = response_gen(text) # Generate
|
| 143 |
-
st.write(f"Generated response: {response}") # Display the generated response
|
| 144 |
-
sound_gen(response) # Convert the
|
| 145 |
|
| 146 |
-
# Run the main function
|
| 147 |
if __name__ == "__main__":
|
| 148 |
main()
|
|
|
|
| 1 |
##########################################
|
| 2 |
# Step 0: Import required libraries
|
| 3 |
##########################################
|
| 4 |
+
import streamlit as st # For building the web application
|
| 5 |
from transformers import (
|
| 6 |
pipeline,
|
| 7 |
SpeechT5Processor,
|
|
|
|
| 9 |
SpeechT5HifiGan,
|
| 10 |
AutoModelForCausalLM,
|
| 11 |
AutoTokenizer
|
| 12 |
+
) # For emotion analysis, text-to-speech, and text generation
|
| 13 |
from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
|
| 14 |
import torch # For tensor operations
|
| 15 |
import soundfile as sf # For saving audio as .wav files
|
|
|
|
|
|
|
| 16 |
|
| 17 |
##########################################
|
| 18 |
# Streamlit application title and input
|
| 19 |
##########################################
|
| 20 |
+
st.title("Comment Reply for You") # Application title
|
| 21 |
+
st.write("Generate automatic replies for user comments") # Application description
|
| 22 |
+
text = st.text_area("Enter your comment", "") # Text input for user to enter comments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
##########################################
|
| 25 |
# Step 1: Sentiment Analysis Function
|
| 26 |
##########################################
|
| 27 |
def analyze_dominant_emotion(user_review):
|
| 28 |
"""
|
| 29 |
+
Analyze the dominant emotion in the user's review using a text classification model.
|
| 30 |
"""
|
| 31 |
emotion_classifier = pipeline(
|
| 32 |
"text-classification",
|
| 33 |
model="Thea231/jhartmann_emotion_finetuning",
|
| 34 |
return_all_scores=True
|
| 35 |
+
) # Load pre-trained emotion classification model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review
|
| 38 |
+
dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence
|
| 39 |
+
return dominant_emotion
|
| 40 |
+
|
| 41 |
##########################################
|
| 42 |
# Step 2: Response Generation Function
|
| 43 |
##########################################
|
| 44 |
def response_gen(user_review):
|
| 45 |
"""
|
| 46 |
+
Generate a response based on the sentiment of the user's review.
|
| 47 |
"""
|
| 48 |
+
# Use Llama-based model to create a response based on a generated prompt
|
| 49 |
+
dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion
|
| 50 |
+
emotion_label = dominant_emotion['label'].lower() # Extract emotion label
|
| 51 |
+
|
| 52 |
+
# Define response templates for each emotion
|
| 53 |
emotion_prompts = {
|
| 54 |
"anger": (
|
| 55 |
+
"Customer complaint: '{review}'\n\n"
|
| 56 |
"As a customer service representative, write a response that:\n"
|
| 57 |
"- Sincerely apologizes for the issue\n"
|
| 58 |
"- Explains how the issue will be resolved\n"
|
|
|
|
| 60 |
"Response:"
|
| 61 |
),
|
| 62 |
"joy": (
|
| 63 |
+
"Customer review: '{review}'\n\n"
|
| 64 |
"As a customer service representative, write a positive response that:\n"
|
| 65 |
"- Thanks the customer for their feedback\n"
|
| 66 |
"- Acknowledges both positive and constructive comments\n"
|
| 67 |
"- Invites them to explore loyalty programs\n\n"
|
| 68 |
"Response:"
|
| 69 |
),
|
| 70 |
+
# Add other emotions as needed...
|
| 71 |
}
|
| 72 |
+
|
| 73 |
+
# Format the prompt with the user's review
|
| 74 |
+
prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review)
|
| 75 |
+
|
| 76 |
+
# Load a pre-trained text generation model (replace 'meta-llama/Llama-3.2-1B' with an available model)
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
| 78 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
| 79 |
+
inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt
|
| 80 |
+
outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response
|
| 81 |
+
|
| 82 |
+
input_length = inputs.input_ids.shape[1] # Length of the input text
|
| 83 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text
|
| 84 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
##########################################
|
| 87 |
# Step 3: Text-to-Speech Conversion Function
|
| 88 |
##########################################
|
| 89 |
def sound_gen(response):
|
| 90 |
"""
|
| 91 |
+
Convert the generated response to speech and save as a .wav file.
|
| 92 |
"""
|
| 93 |
+
# Load the pre-trained TTS models
|
| 94 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 95 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
| 96 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 97 |
+
|
| 98 |
+
# Load speaker embeddings (e.g., neutral female voice)
|
| 99 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 100 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 101 |
+
|
| 102 |
+
# Process the input text and generate a spectrogram
|
| 103 |
+
inputs = processor(text=response, return_tensors="pt")
|
| 104 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
| 105 |
+
|
| 106 |
+
# Use the vocoder to generate a waveform
|
| 107 |
+
with torch.no_grad():
|
| 108 |
+
speech = vocoder(spectrogram)
|
| 109 |
+
|
| 110 |
+
# Save the generated speech as a .wav file
|
| 111 |
+
sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000)
|
| 112 |
+
st.audio("customer_service_response.wav") # Play the audio in Streamlit
|
| 113 |
|
| 114 |
##########################################
|
| 115 |
# Main Function
|
| 116 |
##########################################
|
| 117 |
def main():
|
| 118 |
"""
|
| 119 |
+
Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech.
|
| 120 |
"""
|
| 121 |
+
if text: # Check if the user entered a comment
|
| 122 |
+
response = response_gen(text) # Generate a response
|
| 123 |
+
st.write(f"Generated response: {response}") # Display the generated response
|
| 124 |
+
sound_gen(response) # Convert the response to speech and play it
|
| 125 |
|
| 126 |
+
# Run the main function
|
| 127 |
if __name__ == "__main__":
|
| 128 |
main()
|