Spaces:
Running
Running
File size: 38,211 Bytes
cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 27613d2 cca4a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
// Import transformers.js 3.0.0 from CDN (new Hugging Face ownership)
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0';
// Make available globally
window.transformers = { pipeline, env };
window.transformersLoaded = true;
console.log('✅ Transformers.js 3.0.0 loaded via ES modules (Hugging Face)');
// Global variables for transformers.js
let transformersPipeline = null;
let transformersEnv = null;
let transformersReady = false;
// Document storage and AI state
let documents = [
{
id: 0,
title: "Artificial Intelligence Overview",
content: "Artificial Intelligence (AI) is a branch of computer science that aims to create intelligent machines that work and react like humans. Some activities computers with AI are designed for include speech recognition, learning, planning, and problem-solving. AI is used in healthcare, finance, transportation, and entertainment. Machine learning enables computers to learn from experience without explicit programming. Deep learning uses neural networks to understand complex patterns in data.",
embedding: null
},
{
id: 1,
title: "Space Exploration",
content: "Space exploration is the ongoing discovery and exploration of celestial structures in outer space through evolving space technology. Physical exploration is conducted by unmanned robotic probes and human spaceflight. Space exploration has been used for geopolitical rivalries like the Cold War. The early era was driven by a Space Race between the Soviet Union and United States. Modern exploration includes Mars missions, the International Space Station, and satellite programs.",
embedding: null
},
{
id: 2,
title: "Renewable Energy",
content: "Renewable energy comes from naturally replenished resources on a human timescale. It includes sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy contrasts with fossil fuels that are used faster than replenished. Most renewable sources are sustainable. Solar energy is abundant and promising. Wind energy and hydroelectric power are major contributors to renewable generation worldwide.",
embedding: null
}
];
let embeddingModel = null;
let qaModel = null;
let llmModel = null;
let loadedModelName = '';
let modelsInitialized = false;
// Calculate cosine similarity between two vectors
function cosineSimilarity(a, b) {
const dotProduct = a.reduce((sum, val, i) => sum + val * b[i], 0);
const magnitudeA = Math.sqrt(a.reduce((sum, val) => sum + val * val, 0));
const magnitudeB = Math.sqrt(b.reduce((sum, val) => sum + val * val, 0));
if (magnitudeA === 0 || magnitudeB === 0) return 0;
return dotProduct / (magnitudeA * magnitudeB);
}
// Initialize transformers.js when the script loads
async function initTransformers() {
try {
console.log('🔄 Initializing Transformers.js...');
// Try ES modules first (preferred method)
if (window.transformers && window.transformersLoaded) {
console.log('✅ Using ES modules version (Transformers.js 3.0.0)');
({ pipeline: transformersPipeline, env: transformersEnv } = window.transformers);
}
// Fallback to UMD version
else if (window.Transformers) {
console.log('✅ Using UMD version (Transformers.js 3.0.0)');
({ pipeline: transformersPipeline, env: transformersEnv } = window.Transformers);
}
// Wait for library to load
else {
console.log('⏳ Waiting for library to load...');
let attempts = 0;
while (!window.Transformers && !window.transformersLoaded && attempts < 50) {
await new Promise(resolve => setTimeout(resolve, 200));
attempts++;
}
if (window.transformers && window.transformersLoaded) {
({ pipeline: transformersPipeline, env: transformersEnv } = window.transformers);
} else if (window.Transformers) {
({ pipeline: transformersPipeline, env: transformersEnv } = window.Transformers);
} else {
throw new Error('Failed to load Transformers.js library');
}
}
// Configure transformers.js with minimal settings
if (transformersEnv) {
transformersEnv.allowLocalModels = false;
transformersEnv.allowRemoteModels = true;
// Let Transformers.js use default WASM paths for better compatibility
}
transformersReady = true;
console.log('✅ Transformers.js initialized successfully');
// Update UI to show ready state
updateStatus();
// Update status indicator
const statusSpan = document.getElementById('transformersStatus');
if (statusSpan) {
statusSpan.textContent = '✅ Ready!';
statusSpan.style.color = 'green';
}
} catch (error) {
console.error('❌ Error initializing Transformers.js:', error);
// Show error in UI
const statusDiv = document.getElementById('status');
if (statusDiv) {
statusDiv.textContent = `❌ Failed to load Transformers.js: ${error.message}`;
statusDiv.style.color = 'red';
}
// Update status indicator
const statusSpan = document.getElementById('transformersStatus');
if (statusSpan) {
statusSpan.textContent = `❌ Failed: ${error.message}`;
statusSpan.style.color = 'red';
}
}
}
// Initialize when page loads
document.addEventListener('DOMContentLoaded', function() {
initTransformers();
initFileUpload();
});
// UI Functions
function showTab(tabName) {
// Hide all tabs
document.querySelectorAll('.tab-content').forEach(tab => {
tab.classList.remove('active');
});
document.querySelectorAll('.tab').forEach(button => {
button.classList.remove('active');
});
// Show selected tab
document.getElementById(tabName).classList.add('active');
event.target.classList.add('active');
}
function updateSliderValue(sliderId) {
const slider = document.getElementById(sliderId);
const valueSpan = document.getElementById(sliderId + 'Value');
valueSpan.textContent = slider.value;
}
function updateStatus() {
const status = document.getElementById('status');
const transformersStatus = transformersReady ? 'Ready' : 'Not ready';
const embeddingStatus = embeddingModel ? 'Loaded' : 'Not loaded';
const qaStatus = qaModel ? 'Loaded' : 'Not loaded';
const llmStatus = llmModel ? 'Loaded' : 'Not loaded';
status.textContent = `📊 Documents: ${documents.length} | 🔧 Transformers.js: ${transformersStatus} | 🤖 QA: ${qaStatus} | 🧠 Embedding: ${embeddingStatus} | 🚀 LLM: ${llmStatus}`;
}
function updateProgress(percent, text) {
const progressBar = document.getElementById('progressBar');
const progressText = document.getElementById('progressText');
progressBar.style.width = percent + '%';
progressText.textContent = text;
}
// AI Functions
async function initializeModels() {
const statusDiv = document.getElementById('initStatus');
const progressDiv = document.getElementById('initProgress');
const initBtn = document.getElementById('initBtn');
statusDiv.style.display = 'block';
progressDiv.style.display = 'block';
initBtn.disabled = true;
try {
// Check if transformers.js is ready
if (!transformersReady || !transformersPipeline) {
updateProgress(5, "Waiting for Transformers.js to initialize...");
statusDiv.innerHTML = '🔄 Initializing Transformers.js library...';
// Wait for transformers.js to be ready
let attempts = 0;
while (!transformersReady && attempts < 30) {
await new Promise(resolve => setTimeout(resolve, 1000));
attempts++;
}
if (!transformersReady) {
throw new Error('Transformers.js failed to initialize. Please refresh the page.');
}
}
updateProgress(10, "Loading embedding model...");
statusDiv.innerHTML = '🔄 Loading embedding model (Xenova/all-MiniLM-L6-v2)...';
// Load embedding model with progress tracking
embeddingModel = await transformersPipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2', {
progress_callback: (progress) => {
if (progress.status === 'downloading') {
const percent = progress.loaded && progress.total ?
Math.round((progress.loaded / progress.total) * 100) : 0;
statusDiv.innerHTML = `🔄 Downloading embedding model: ${percent}%`;
}
}
});
updateProgress(40, "Loading question-answering model...");
statusDiv.innerHTML = '🔄 Loading QA model (Xenova/distilbert-base-cased-distilled-squad)...';
// Load QA model with progress tracking
qaModel = await transformersPipeline('question-answering', 'Xenova/distilbert-base-cased-distilled-squad', {
progress_callback: (progress) => {
if (progress.status === 'downloading') {
const percent = progress.loaded && progress.total ?
Math.round((progress.loaded / progress.total) * 100) : 0;
statusDiv.innerHTML = `🔄 Downloading QA model: ${percent}%`;
}
}
});
updateProgress(70, "Loading language model...");
statusDiv.innerHTML = '🔄 Loading LLM (trying SmolLM models)...';
// Load LLM model - Stable Transformers.js 3.0.0 configuration
const modelsToTry = [
{
name: 'Xenova/gpt2',
options: {}
},
{
name: 'Xenova/distilgpt2',
options: {}
}
];
let modelLoaded = false;
for (const model of modelsToTry) {
try {
console.log(`Trying to load ${model.name}...`);
statusDiv.innerHTML = `🔄 Loading LLM (${model.name})...`;
// Load LLM with progress tracking
llmModel = await transformersPipeline('text-generation', model.name, {
progress_callback: (progress) => {
if (progress.status === 'downloading') {
const percent = progress.loaded && progress.total ?
Math.round((progress.loaded / progress.total) * 100) : 0;
statusDiv.innerHTML = `🔄 Downloading ${model.name}: ${percent}%`;
}
}
});
console.log(`✅ Successfully loaded ${model.name}`);
loadedModelName = model.name;
modelLoaded = true;
break;
} catch (error) {
console.warn(`${model.name} failed:`, error);
}
}
if (!modelLoaded) {
throw new Error('Failed to load any LLM model');
}
updateProgress(85, "Generating embeddings for documents...");
statusDiv.innerHTML = '🔄 Generating embeddings for existing documents...';
// Generate embeddings for all existing documents
for (let i = 0; i < documents.length; i++) {
const doc = documents[i];
updateProgress(85 + (i / documents.length) * 10, `Processing document ${i + 1}/${documents.length}...`);
doc.embedding = await generateEmbedding(doc.content);
}
updateProgress(100, "Initialization complete!");
modelsInitialized = true;
statusDiv.innerHTML = `✅ AI Models initialized successfully!
🧠 Embedding Model: Xenova/all-MiniLM-L6-v2 (384 dimensions)
🤖 QA Model: Xenova/distilbert-base-cased-distilled-squad
🚀 LLM Model: ${loadedModelName} (Language model for text generation)
📚 Documents processed: ${documents.length}
🔮 Ready for semantic search, Q&A, and LLM chat!
📊 Model Info:
• Embedding model size: ~23MB
• QA model size: ~28MB
• LLM model size: ~15-50MB (depending on model loaded)
• Total memory usage: ~70-100MB
• Inference speed: ~2-8 seconds per operation`;
updateStatus();
} catch (error) {
console.error('Error initializing models:', error);
statusDiv.innerHTML = `❌ Error initializing models: ${error.message}
Please check your internet connection and try again.`;
updateProgress(0, "Initialization failed");
} finally {
initBtn.disabled = false;
setTimeout(() => {
progressDiv.style.display = 'none';
}, 2000);
}
}
async function generateEmbedding(text) {
if (!transformersReady || !transformersPipeline) {
throw new Error('Transformers.js not initialized');
}
if (!embeddingModel) {
throw new Error('Embedding model not loaded');
}
try {
const output = await embeddingModel(text, { pooling: 'mean', normalize: true });
return Array.from(output.data);
} catch (error) {
console.error('Error generating embedding:', error);
throw error;
}
}
async function searchDocumentsSemantic() {
const query = document.getElementById('searchQuery').value;
const maxResults = parseInt(document.getElementById('maxResults').value);
const resultsDiv = document.getElementById('searchResults');
const searchBtn = document.getElementById('searchBtn');
if (!query.trim()) {
resultsDiv.style.display = 'block';
resultsDiv.textContent = '❌ Please enter a search query';
return;
}
if (!transformersReady || !modelsInitialized || !embeddingModel) {
resultsDiv.style.display = 'block';
resultsDiv.textContent = '❌ Please initialize AI models first!';
return;
}
resultsDiv.style.display = 'block';
resultsDiv.innerHTML = '<div class="loading"></div> Generating query embedding and searching...';
searchBtn.disabled = true;
try {
// Generate embedding for query
const queryEmbedding = await generateEmbedding(query);
// Calculate similarities
const results = [];
documents.forEach(doc => {
if (doc.embedding) {
const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
results.push({ doc, similarity });
}
});
// Sort by similarity
results.sort((a, b) => b.similarity - a.similarity);
if (results.length === 0) {
resultsDiv.textContent = `❌ No documents with embeddings found for '${query}'`;
return;
}
let output = `🔍 Semantic search results for '${query}':\n\n`;
results.slice(0, maxResults).forEach((result, i) => {
const doc = result.doc;
const similarity = result.similarity;
const excerpt = doc.content.length > 200 ? doc.content.substring(0, 200) + '...' : doc.content;
output += `**Result ${i + 1}** (similarity: ${similarity.toFixed(3)})\n📄 Title: ${doc.title}\n📝 Content: ${excerpt}\n\n`;
});
resultsDiv.textContent = output;
} catch (error) {
console.error('Search error:', error);
resultsDiv.textContent = `❌ Error during search: ${error.message}`;
} finally {
searchBtn.disabled = false;
}
}
function searchDocumentsKeyword() {
const query = document.getElementById('searchQuery').value;
const maxResults = parseInt(document.getElementById('maxResults').value);
const resultsDiv = document.getElementById('searchResults');
if (!query.trim()) {
resultsDiv.style.display = 'block';
resultsDiv.textContent = '❌ Please enter a search query';
return;
}
resultsDiv.style.display = 'block';
resultsDiv.innerHTML = '<div class="loading"></div> Searching keywords...';
setTimeout(() => {
const results = [];
const queryWords = query.toLowerCase().split(/\s+/);
documents.forEach(doc => {
const contentLower = doc.content.toLowerCase();
const titleLower = doc.title.toLowerCase();
let matches = 0;
queryWords.forEach(word => {
matches += (contentLower.match(new RegExp(word, 'g')) || []).length;
matches += (titleLower.match(new RegExp(word, 'g')) || []).length * 2;
});
if (matches > 0) {
results.push({ doc, score: matches });
}
});
results.sort((a, b) => b.score - a.score);
if (results.length === 0) {
resultsDiv.textContent = `❌ No documents found containing '${query}'`;
return;
}
let output = `🔍 Keyword search results for '${query}':\n\n`;
results.slice(0, maxResults).forEach((result, i) => {
const doc = result.doc;
const excerpt = doc.content.length > 200 ? doc.content.substring(0, 200) + '...' : doc.content;
output += `**Result ${i + 1}**\n📄 Title: ${doc.title}\n📝 Content: ${excerpt}\n\n`;
});
resultsDiv.textContent = output;
}, 500);
}
async function chatWithRAG() {
const question = document.getElementById('chatQuestion').value;
const maxContext = parseInt(document.getElementById('maxContext').value);
const responseDiv = document.getElementById('chatResponse');
const chatBtn = document.getElementById('chatBtn');
if (!question.trim()) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ Please enter a question';
return;
}
if (!transformersReady || !modelsInitialized || !embeddingModel || !qaModel) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ AI models not loaded yet. Please initialize them first!';
return;
}
responseDiv.style.display = 'block';
responseDiv.innerHTML = '<div class="loading"></div> Generating answer with real AI...';
chatBtn.disabled = true;
try {
// Generate embedding for the question
const questionEmbedding = await generateEmbedding(question);
// Find relevant documents using semantic similarity
const relevantDocs = [];
documents.forEach(doc => {
if (doc.embedding) {
const similarity = cosineSimilarity(questionEmbedding, doc.embedding);
if (similarity > 0.1) {
relevantDocs.push({ doc, similarity });
}
}
});
relevantDocs.sort((a, b) => b.similarity - a.similarity);
relevantDocs.splice(maxContext);
if (relevantDocs.length === 0) {
responseDiv.textContent = '❌ No relevant context found in the documents for your question.';
return;
}
// Combine context from top documents
const context = relevantDocs.map(item => item.doc.content).join(' ').substring(0, 2000);
// Use the QA model to generate an answer
const qaResult = await qaModel(question, context);
let response = `🤖 AI Answer:\n${qaResult.answer}\n\n`;
response += `📊 Confidence: ${(qaResult.score * 100).toFixed(1)}%\n\n`;
response += `📚 Sources: ${relevantDocs.length} documents\n`;
response += `🔍 Best match: "${relevantDocs[0].doc.title}" (similarity: ${relevantDocs[0].similarity.toFixed(3)})\n\n`;
response += `📝 Context used:\n${context.substring(0, 300)}...`;
responseDiv.textContent = response;
} catch (error) {
console.error('Chat error:', error);
responseDiv.textContent = `❌ Error generating response: ${error.message}`;
} finally {
chatBtn.disabled = false;
}
}
async function chatWithLLM() {
const prompt = document.getElementById('llmPrompt').value;
const maxTokens = parseInt(document.getElementById('maxTokens').value);
const temperature = parseFloat(document.getElementById('temperature').value);
const responseDiv = document.getElementById('llmResponse');
const llmBtn = document.getElementById('llmBtn');
if (!prompt.trim()) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ Please enter a prompt';
return;
}
if (!transformersReady || !modelsInitialized || !llmModel) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ LLM model not loaded yet. Please initialize models first!';
return;
}
responseDiv.style.display = 'block';
responseDiv.innerHTML = '<div class="loading"></div> Generating text with LLM...';
llmBtn.disabled = true;
try {
// Generate text with the LLM
const result = await llmModel(prompt, {
max_new_tokens: maxTokens,
temperature: temperature,
do_sample: true,
return_full_text: false
});
let generatedText = result[0].generated_text;
let response = `🚀 LLM Generated Text:\n\n"${generatedText}"\n\n`;
response += `📊 Settings: ${maxTokens} tokens, temperature ${temperature}\n`;
response += `🤖 Model: ${loadedModelName ? loadedModelName.split('/')[1] : 'Language Model'}\n`;
response += `⏱️ Generated in real-time by your browser!`;
responseDiv.textContent = response;
} catch (error) {
console.error('LLM error:', error);
responseDiv.textContent = `❌ Error generating text: ${error.message}`;
} finally {
llmBtn.disabled = false;
}
}
async function chatWithLLMRAG() {
const prompt = document.getElementById('llmPrompt').value;
const maxTokens = parseInt(document.getElementById('maxTokens').value);
const temperature = parseFloat(document.getElementById('temperature').value);
const responseDiv = document.getElementById('llmResponse');
const llmRagBtn = document.getElementById('llmRagBtn');
if (!prompt.trim()) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ Please enter a prompt';
return;
}
if (!transformersReady || !modelsInitialized || !llmModel || !embeddingModel) {
responseDiv.style.display = 'block';
responseDiv.textContent = '❌ Models not loaded yet. Please initialize all models first!';
return;
}
responseDiv.style.display = 'block';
responseDiv.innerHTML = '<div class="loading"></div> Finding relevant context and generating with LLM...';
llmRagBtn.disabled = true;
try {
// Find relevant documents using semantic search
const queryEmbedding = await generateEmbedding(prompt);
const relevantDocs = [];
documents.forEach(doc => {
if (doc.embedding) {
const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
if (similarity > 0.1) {
relevantDocs.push({ doc, similarity });
}
}
});
relevantDocs.sort((a, b) => b.similarity - a.similarity);
relevantDocs.splice(3); // Limit to top 3 documents
// Create enhanced prompt with context
let enhancedPrompt = prompt;
if (relevantDocs.length > 0) {
const context = relevantDocs.map(item => item.doc.content.substring(0, 300)).join(' ');
enhancedPrompt = `Context: ${context}\n\nQuestion: ${prompt}\n\nAnswer:`;
}
// Generate text with the LLM using enhanced prompt
const result = await llmModel(enhancedPrompt, {
max_new_tokens: maxTokens,
temperature: temperature,
do_sample: true,
return_full_text: false
});
let generatedText = result[0].generated_text;
let response = `🤖 LLM + RAG Generated Response:\n\n"${generatedText}"\n\n`;
response += `📚 Context: ${relevantDocs.length} relevant documents used\n`;
if (relevantDocs.length > 0) {
response += `🔍 Best match: "${relevantDocs[0].doc.title}" (similarity: ${relevantDocs[0].similarity.toFixed(3)})\n`;
}
response += `📊 Settings: ${maxTokens} tokens, temperature ${temperature}\n`;
response += `🚀 Model: ${loadedModelName ? loadedModelName.split('/')[1] : 'LLM'} enhanced with document retrieval`;
responseDiv.textContent = response;
} catch (error) {
console.error('LLM+RAG error:', error);
responseDiv.textContent = `❌ Error generating response: ${error.message}`;
} finally {
llmRagBtn.disabled = false;
}
}
async function addDocumentManual() {
const title = document.getElementById('docTitle').value || `User Document ${documents.length - 2}`;
const content = document.getElementById('docContent').value;
const statusDiv = document.getElementById('addStatus');
const previewDiv = document.getElementById('docPreview');
const addBtn = document.getElementById('addBtn');
if (!content.trim()) {
statusDiv.style.display = 'block';
statusDiv.textContent = '❌ Please enter document content';
previewDiv.style.display = 'none';
return;
}
statusDiv.style.display = 'block';
statusDiv.innerHTML = '<div class="loading"></div> Adding document...';
addBtn.disabled = true;
try {
const docId = documents.length;
const newDocument = {
id: docId,
title: title,
content: content.trim(),
embedding: null
};
// Generate embedding if models are initialized
if (transformersReady && modelsInitialized && embeddingModel) {
statusDiv.innerHTML = '<div class="loading"></div> Generating AI embedding...';
newDocument.embedding = await generateEmbedding(content);
}
documents.push(newDocument);
const preview = content.length > 300 ? content.substring(0, 300) + '...' : content;
const status = `✅ Document added successfully!
📄 Title: ${title}
📊 Size: ${content.length.toLocaleString()} characters
📚 Total documents: ${documents.length}${(transformersReady && modelsInitialized) ? '\n🧠 AI embedding generated automatically' : '\n⚠️ AI embedding will be generated when models are loaded'}`;
statusDiv.textContent = status;
previewDiv.style.display = 'block';
previewDiv.textContent = `📖 Preview:\n${preview}`;
// Clear form
document.getElementById('docTitle').value = '';
document.getElementById('docContent').value = '';
updateStatus();
} catch (error) {
console.error('Error adding document:', error);
statusDiv.textContent = `❌ Error adding document: ${error.message}`;
} finally {
addBtn.disabled = false;
}
}
// File upload functionality
function initFileUpload() {
const uploadArea = document.getElementById('uploadArea');
const fileInput = document.getElementById('fileInput');
if (!uploadArea || !fileInput) return;
// Click to select files
uploadArea.addEventListener('click', () => {
fileInput.click();
});
// Drag and drop functionality
uploadArea.addEventListener('dragover', (e) => {
e.preventDefault();
uploadArea.classList.add('dragover');
});
uploadArea.addEventListener('dragleave', (e) => {
e.preventDefault();
uploadArea.classList.remove('dragover');
});
uploadArea.addEventListener('drop', (e) => {
e.preventDefault();
uploadArea.classList.remove('dragover');
const files = e.dataTransfer.files;
handleFiles(files);
});
// File input change
fileInput.addEventListener('change', (e) => {
handleFiles(e.target.files);
});
}
async function handleFiles(files) {
const uploadStatus = document.getElementById('uploadStatus');
const uploadProgress = document.getElementById('uploadProgress');
const uploadProgressBar = document.getElementById('uploadProgressBar');
const uploadProgressText = document.getElementById('uploadProgressText');
if (files.length === 0) return;
uploadStatus.style.display = 'block';
uploadProgress.style.display = 'block';
uploadStatus.textContent = '';
let successCount = 0;
let errorCount = 0;
for (let i = 0; i < files.length; i++) {
const file = files[i];
const progress = ((i + 1) / files.length) * 100;
uploadProgressBar.style.width = progress + '%';
if (file.size > 10000) {
uploadProgressText.textContent = `Processing large file: ${file.name} (${i + 1}/${files.length}) - chunking for better search...`;
} else {
uploadProgressText.textContent = `Processing ${file.name} (${i + 1}/${files.length})...`;
}
try {
await processFile(file);
successCount++;
} catch (error) {
console.error(`Error processing ${file.name}:`, error);
errorCount++;
}
}
uploadProgress.style.display = 'none';
let statusText = `✅ Upload complete!\n📁 ${successCount} files processed successfully`;
if (errorCount > 0) {
statusText += `\n❌ ${errorCount} files failed to process`;
}
statusText += `\n📊 Total documents: ${documents.length}`;
statusText += `\n🧩 Large files automatically chunked for better search`;
uploadStatus.textContent = statusText;
updateStatus();
// Clear file input
document.getElementById('fileInput').value = '';
}
// Document chunking function for large files
function chunkDocument(content, maxChunkSize = 1000) {
const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 0);
const chunks = [];
let currentChunk = '';
for (let sentence of sentences) {
sentence = sentence.trim();
if (currentChunk.length + sentence.length > maxChunkSize && currentChunk.length > 0) {
chunks.push(currentChunk.trim());
currentChunk = sentence;
} else {
currentChunk += (currentChunk ? '. ' : '') + sentence;
}
}
if (currentChunk.trim()) {
chunks.push(currentChunk.trim());
}
return chunks.length > 0 ? chunks : [content];
}
async function processFile(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = async function(e) {
try {
const content = e.target.result.trim();
const baseTitle = file.name.replace(/\.[^/.]+$/, ""); // Remove file extension
// Check if document is large and needs chunking
if (content.length > 2000) {
// Chunk large documents
const chunks = chunkDocument(content, 1500);
console.log(`📄 Chunking large file: ${chunks.length} chunks created from ${content.length} characters`);
for (let i = 0; i < chunks.length; i++) {
const chunkTitle = chunks.length > 1 ? `${baseTitle} (Part ${i + 1}/${chunks.length})` : baseTitle;
const newDocument = {
id: documents.length,
title: chunkTitle,
content: chunks[i],
embedding: null
};
// Generate embedding if models are loaded
if (transformersReady && modelsInitialized && embeddingModel) {
newDocument.embedding = await generateEmbedding(chunks[i]);
}
documents.push(newDocument);
}
} else {
// Small document - process as single document
const newDocument = {
id: documents.length,
title: baseTitle,
content: content,
embedding: null
};
// Generate embedding if models are loaded
if (transformersReady && modelsInitialized && embeddingModel) {
newDocument.embedding = await generateEmbedding(content);
}
documents.push(newDocument);
}
resolve();
} catch (error) {
reject(error);
}
};
reader.onerror = function() {
reject(new Error(`Failed to read file: ${file.name}`));
};
// Read file as text
reader.readAsText(file);
});
}
async function testSystem() {
const outputDiv = document.getElementById('testOutput');
const testBtn = document.getElementById('testBtn');
outputDiv.style.display = 'block';
outputDiv.innerHTML = '<div class="loading"></div> Running system tests...';
testBtn.disabled = true;
try {
let output = `🧪 System Test Results:\n\n`;
output += `📊 Documents: ${documents.length} loaded\n`;
output += `🔧 Transformers.js: ${transformersReady ? '✅ Ready' : '❌ Not ready'}\n`;
output += `🧠 Embedding Model: ${embeddingModel ? '✅ Loaded' : '❌ Not loaded'}\n`;
output += `🤖 QA Model: ${qaModel ? '✅ Loaded' : '❌ Not loaded'}\n`;
output += `🚀 LLM Model: ${llmModel ? '✅ Loaded' : '❌ Not loaded'}\n\n`;
if (transformersReady && modelsInitialized && embeddingModel) {
output += `🔍 Testing embedding generation...\n`;
const testEmbedding = await generateEmbedding("test sentence");
output += `✅ Embedding test: Generated ${testEmbedding.length}D vector\n\n`;
output += `🔍 Testing semantic search...\n`;
const testQuery = "artificial intelligence";
const queryEmbedding = await generateEmbedding(testQuery);
let testResults = [];
documents.forEach(doc => {
if (doc.embedding) {
const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
testResults.push({ doc, similarity });
}
});
testResults.sort((a, b) => b.similarity - a.similarity);
if (testResults.length > 0) {
output += `✅ Search test: Found ${testResults.length} results\n`;
output += `📄 Top result: "${testResults[0].doc.title}" (similarity: ${testResults[0].similarity.toFixed(3)})\n\n`;
}
if (qaModel) {
output += `🤖 Testing QA model...\n`;
const context = documents[0].content.substring(0, 500);
const testQuestion = "What is artificial intelligence?";
const qaResult = await qaModel(testQuestion, context);
output += `✅ QA test: Generated answer with ${(qaResult.score * 100).toFixed(1)}% confidence\n`;
output += `💬 Answer: ${qaResult.answer.substring(0, 100)}...\n\n`;
}
if (llmModel) {
output += `🚀 Testing LLM model...\n`;
const testPrompt = "Explain artificial intelligence:";
const llmResult = await llmModel(testPrompt, { max_new_tokens: 30, temperature: 0.7, do_sample: true, return_full_text: false });
output += `✅ LLM test: Generated text completion\n`;
output += `💬 Generated: "${llmResult[0].generated_text.substring(0, 100)}..."\n\n`;
}
output += `🎉 All tests passed! System is fully operational.`;
} else {
output += `⚠️ Models not initialized. Click "Initialize AI Models" first.`;
}
outputDiv.textContent = output;
} catch (error) {
console.error('Test error:', error);
outputDiv.textContent = `❌ Test failed: ${error.message}`;
} finally {
testBtn.disabled = false;
}
}
// Initialize UI
updateStatus();
// Show version info in console
console.log('🤖 AI-Powered RAG System with Transformers.js');
console.log('Models: Xenova/all-MiniLM-L6-v2, Xenova/distilbert-base-cased-distilled-squad');
// Export functions for global access
window.showTab = showTab;
window.updateSliderValue = updateSliderValue;
window.initializeModels = initializeModels;
window.searchDocumentsSemantic = searchDocumentsSemantic;
window.searchDocumentsKeyword = searchDocumentsKeyword;
window.chatWithRAG = chatWithRAG;
window.chatWithLLM = chatWithLLM;
window.chatWithLLMRAG = chatWithLLMRAG;
window.addDocumentManual = addDocumentManual;
window.testSystem = testSystem;
|