Spaces:
Sleeping
Sleeping
Enhance model loading for prediction by integrating pre-trained BERT and refining checkpoint handling
Browse files- utils/prediction.py +19 -5
utils/prediction.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from utils.model import BiLSTMAttentionBERT, BiLSTMConfig
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer
|
| 4 |
from sklearn.preprocessing import LabelEncoder
|
| 5 |
import numpy as np
|
| 6 |
import streamlit as st
|
|
@@ -12,6 +12,11 @@ from huggingface_hub import hf_hub_download
|
|
| 12 |
def load_model_for_prediction():
|
| 13 |
try:
|
| 14 |
st.write("Starting model loading...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
config = BiLSTMConfig(
|
| 16 |
hidden_dim=128,
|
| 17 |
num_classes=22,
|
|
@@ -19,20 +24,29 @@ def load_model_for_prediction():
|
|
| 19 |
dropout=0.5
|
| 20 |
)
|
| 21 |
|
| 22 |
-
# Initialize model
|
| 23 |
model = BiLSTMAttentionBERT(config)
|
|
|
|
| 24 |
|
| 25 |
-
# Load checkpoint
|
| 26 |
model_path = hf_hub_download(
|
| 27 |
repo_id="joko333/BiLSTM_v01",
|
| 28 |
filename="model_epoch8_acc72.53.pt"
|
| 29 |
)
|
| 30 |
checkpoint = torch.load(model_path, map_location='cpu')
|
| 31 |
|
| 32 |
-
#
|
|
|
|
|
|
|
| 33 |
if 'model_state_dict' in checkpoint:
|
|
|
|
|
|
|
| 34 |
state_dict = checkpoint['model_state_dict']
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
st.write("Model loaded successfully")
|
| 37 |
else:
|
| 38 |
st.error("Invalid checkpoint format")
|
|
|
|
| 1 |
from utils.model import BiLSTMAttentionBERT, BiLSTMConfig
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModel
|
| 4 |
from sklearn.preprocessing import LabelEncoder
|
| 5 |
import numpy as np
|
| 6 |
import streamlit as st
|
|
|
|
| 12 |
def load_model_for_prediction():
|
| 13 |
try:
|
| 14 |
st.write("Starting model loading...")
|
| 15 |
+
|
| 16 |
+
# Initialize BERT first
|
| 17 |
+
bert = AutoModel.from_pretrained('dmis-lab/biobert-base-cased-v1.2')
|
| 18 |
+
|
| 19 |
+
# Initialize config and model
|
| 20 |
config = BiLSTMConfig(
|
| 21 |
hidden_dim=128,
|
| 22 |
num_classes=22,
|
|
|
|
| 24 |
dropout=0.5
|
| 25 |
)
|
| 26 |
|
|
|
|
| 27 |
model = BiLSTMAttentionBERT(config)
|
| 28 |
+
model.bert = bert # Set pre-trained BERT
|
| 29 |
|
| 30 |
+
# Load custom layers from checkpoint
|
| 31 |
model_path = hf_hub_download(
|
| 32 |
repo_id="joko333/BiLSTM_v01",
|
| 33 |
filename="model_epoch8_acc72.53.pt"
|
| 34 |
)
|
| 35 |
checkpoint = torch.load(model_path, map_location='cpu')
|
| 36 |
|
| 37 |
+
# Debug checkpoint structure
|
| 38 |
+
st.write("Checkpoint keys:", checkpoint.keys())
|
| 39 |
+
|
| 40 |
if 'model_state_dict' in checkpoint:
|
| 41 |
+
# Extract only custom layer weights
|
| 42 |
+
custom_state_dict = {}
|
| 43 |
state_dict = checkpoint['model_state_dict']
|
| 44 |
+
for key, value in state_dict.items():
|
| 45 |
+
if not key.startswith('bert.'):
|
| 46 |
+
custom_state_dict[key] = value
|
| 47 |
+
|
| 48 |
+
# Load custom layers
|
| 49 |
+
model.load_state_dict(custom_state_dict, strict=False)
|
| 50 |
st.write("Model loaded successfully")
|
| 51 |
else:
|
| 52 |
st.error("Invalid checkpoint format")
|