Spaces:
Sleeping
Sleeping
Load prediction model and update Streamlit app interface
Browse files
app.py
CHANGED
|
@@ -1,16 +1,12 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
#import transformers
|
| 3 |
#from transformers import pipeline
|
| 4 |
|
| 5 |
st.title('My first app')
|
| 6 |
x = st.slider('Select a value')
|
| 7 |
st.write(x, 'squared is', x * x)
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
|
| 10 |
-
|
| 11 |
-
# # Example input text
|
| 12 |
-
# input_text = "I love using Hugging Face models!"
|
| 13 |
-
|
| 14 |
-
# # Get the classification result
|
| 15 |
-
# result = classifier(input_text)
|
| 16 |
-
# st.write(result)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from utils.prediction import load_model_for_prediction
|
| 3 |
#import transformers
|
| 4 |
#from transformers import pipeline
|
| 5 |
|
| 6 |
st.title('My first app')
|
| 7 |
x = st.slider('Select a value')
|
| 8 |
st.write(x, 'squared is', x * x)
|
| 9 |
+
# load the model and cache it
|
| 10 |
+
model, label_encoder, tokenizer = load_model_for_prediction()
|
| 11 |
+
st.write('Model loaded')
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|