Update app.py
Browse files
app.py
CHANGED
|
@@ -1,211 +1,155 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""
|
| 3 |
-
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
|
| 4 |
-
|
| 5 |
-
@author: Jorge Martinez-Gil
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
from sklearn.decomposition import PCA
|
| 11 |
-
import
|
| 12 |
-
import
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
for j in range(low, high):
|
| 93 |
-
if arr[j] <= pivot:
|
| 94 |
-
i
|
| 95 |
-
arr[i], arr[j] = arr[j], arr[i]
|
| 96 |
-
arr[i+1], arr[high] = arr[high], arr[i+1]
|
| 97 |
-
return (i+1)
|
| 98 |
-
|
| 99 |
-
def quick_sort(arr, low, high):
|
| 100 |
-
if low < high:
|
| 101 |
-
pi = partition(arr, low, high)
|
| 102 |
-
quick_sort(arr, low, pi-1)
|
| 103 |
-
quick_sort(arr, pi+1, high)
|
| 104 |
-
return arr
|
| 105 |
-
|
| 106 |
-
}
|
| 107 |
-
|
| 108 |
-
#
|
| 109 |
-
def get_token_embeddings(code):
|
| 110 |
-
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
plt.ylabel('')
|
| 157 |
-
plt.grid(False)
|
| 158 |
-
plt.legend()
|
| 159 |
-
|
| 160 |
-
# Save the figure as a high-quality PNG file
|
| 161 |
-
output_file = os.path.join(output_dir, f"{algo1_name}_vs_{algo2_name}_tokens_2d_pca.png")
|
| 162 |
-
plt.savefig(output_file, format='png', dpi=300, bbox_inches='tight')
|
| 163 |
-
|
| 164 |
-
# Show the plot
|
| 165 |
-
plt.close()
|
| 166 |
-
|
| 167 |
-
print("All pairwise comparison images have been generated.")
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
import gradio as gr
|
| 171 |
-
from io import BytesIO
|
| 172 |
-
from PIL import Image
|
| 173 |
-
|
| 174 |
-
def compare_algorithms(algo1_name, algo2_name):
|
| 175 |
-
algo1_code = sorting_algorithms[algo1_name]
|
| 176 |
-
algo2_code = sorting_algorithms[algo2_name]
|
| 177 |
-
|
| 178 |
-
# Get token embeddings
|
| 179 |
-
algo1_embeddings, algo1_tokens = get_token_embeddings(algo1_code)
|
| 180 |
-
algo2_embeddings, algo2_tokens = get_token_embeddings(algo2_code)
|
| 181 |
-
|
| 182 |
-
# Combine and reduce
|
| 183 |
-
all_embeddings = np.concatenate((algo1_embeddings, algo2_embeddings), axis=0)
|
| 184 |
-
pca = PCA(n_components=2)
|
| 185 |
-
embeddings_2d = pca.fit_transform(all_embeddings)
|
| 186 |
-
|
| 187 |
-
# Plot
|
| 188 |
-
plt.figure(figsize=(6, 5), dpi=150)
|
| 189 |
-
plt.scatter(embeddings_2d[:len(algo1_tokens), 0], embeddings_2d[:len(algo1_tokens), 1], color='red', s=20, label=algo1_name)
|
| 190 |
-
plt.scatter(embeddings_2d[len(algo1_tokens):, 0], embeddings_2d[len(algo1_tokens):, 1], color='blue', s=20, label=algo2_name)
|
| 191 |
-
plt.xticks([]); plt.yticks([]); plt.grid(False); plt.legend()
|
| 192 |
-
|
| 193 |
-
# Save to BytesIO
|
| 194 |
-
buf = BytesIO()
|
| 195 |
-
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 196 |
-
plt.close()
|
| 197 |
-
buf.seek(0)
|
| 198 |
-
return Image.open(buf)
|
| 199 |
-
|
| 200 |
-
interface = gr.Interface(
|
| 201 |
-
fn=compare_algorithms,
|
| 202 |
-
inputs=[
|
| 203 |
-
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 1"),
|
| 204 |
-
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 2")
|
| 205 |
-
],
|
| 206 |
-
outputs=gr.Image(type="pil", label="Token PCA Plot"),
|
| 207 |
-
title="Code Similarity Visualization with GraphCodeBERT"
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
if __name__ == "__main__":
|
| 211 |
-
interface.launch()
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
[Martinez-Gil2024] Augmenting the Interpretability of GraphCodeBERT for Code Similarity Tasks, arXiv preprint arXiv:2410.05275, 2024
|
| 4 |
+
|
| 5 |
+
@author: Jorge Martinez-Gil
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import numpy as np
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from sklearn.decomposition import PCA
|
| 11 |
+
from transformers import RobertaTokenizer, RobertaModel
|
| 12 |
+
import torch
|
| 13 |
+
import gradio as gr
|
| 14 |
+
from io import BytesIO
|
| 15 |
+
from PIL import Image
|
| 16 |
+
|
| 17 |
+
# Load GraphCodeBERT model
|
| 18 |
+
tokenizer = RobertaTokenizer.from_pretrained("microsoft/graphcodebert-base")
|
| 19 |
+
model = RobertaModel.from_pretrained("microsoft/graphcodebert-base")
|
| 20 |
+
|
| 21 |
+
# Define sorting algorithms as strings
|
| 22 |
+
sorting_algorithms = {
|
| 23 |
+
"Bubble_Sort": """
|
| 24 |
+
def bubble_sort(arr):
|
| 25 |
+
n = len(arr)
|
| 26 |
+
for i in range(n):
|
| 27 |
+
for j in range(0, n-i-1):
|
| 28 |
+
if arr[j] > arr[j+1]:
|
| 29 |
+
arr[j], arr[j+1] = arr[j+1], arr[j]
|
| 30 |
+
return arr
|
| 31 |
+
""",
|
| 32 |
+
|
| 33 |
+
"Selection_Sort": """
|
| 34 |
+
def selection_sort(arr):
|
| 35 |
+
for i in range(len(arr)):
|
| 36 |
+
min_idx = i
|
| 37 |
+
for j in range(i+1, len(arr)):
|
| 38 |
+
if arr[j] < arr[min_idx]:
|
| 39 |
+
min_idx = j
|
| 40 |
+
arr[i], arr[min_idx] = arr[min_idx], arr[i]
|
| 41 |
+
return arr
|
| 42 |
+
""",
|
| 43 |
+
|
| 44 |
+
"Insertion_Sort": """
|
| 45 |
+
def insertion_sort(arr):
|
| 46 |
+
for i in range(1, len(arr)):
|
| 47 |
+
key = arr[i]
|
| 48 |
+
j = i-1
|
| 49 |
+
while j >= 0 and key < arr[j]:
|
| 50 |
+
arr[j + 1] = arr[j]
|
| 51 |
+
j -= 1
|
| 52 |
+
arr[j + 1] = key
|
| 53 |
+
return arr
|
| 54 |
+
""",
|
| 55 |
+
|
| 56 |
+
"Merge_Sort": """
|
| 57 |
+
def merge_sort(arr):
|
| 58 |
+
if len(arr) > 1:
|
| 59 |
+
mid = len(arr) // 2
|
| 60 |
+
L = arr[:mid]
|
| 61 |
+
R = arr[mid:]
|
| 62 |
+
|
| 63 |
+
merge_sort(L)
|
| 64 |
+
merge_sort(R)
|
| 65 |
+
|
| 66 |
+
i = j = k = 0
|
| 67 |
+
while i < len(L) and j < len(R):
|
| 68 |
+
if L[i] < R[j]:
|
| 69 |
+
arr[k] = L[i]
|
| 70 |
+
i += 1
|
| 71 |
+
else:
|
| 72 |
+
arr[k] = R[j]
|
| 73 |
+
j += 1
|
| 74 |
+
k += 1
|
| 75 |
+
|
| 76 |
+
while i < len(L):
|
| 77 |
+
arr[k] = L[i]
|
| 78 |
+
i += 1
|
| 79 |
+
k += 1
|
| 80 |
+
|
| 81 |
+
while j < len(R):
|
| 82 |
+
arr[k] = R[j]
|
| 83 |
+
j += 1
|
| 84 |
+
k += 1
|
| 85 |
+
return arr
|
| 86 |
+
""",
|
| 87 |
+
|
| 88 |
+
"Quick_Sort": """
|
| 89 |
+
def partition(arr, low, high):
|
| 90 |
+
i = (low - 1)
|
| 91 |
+
pivot = arr[high]
|
| 92 |
+
for j in range(low, high):
|
| 93 |
+
if arr[j] <= pivot:
|
| 94 |
+
i += 1
|
| 95 |
+
arr[i], arr[j] = arr[j], arr[i]
|
| 96 |
+
arr[i+1], arr[high] = arr[high], arr[i+1]
|
| 97 |
+
return (i + 1)
|
| 98 |
+
|
| 99 |
+
def quick_sort(arr, low, high):
|
| 100 |
+
if low < high:
|
| 101 |
+
pi = partition(arr, low, high)
|
| 102 |
+
quick_sort(arr, low, pi - 1)
|
| 103 |
+
quick_sort(arr, pi + 1, high)
|
| 104 |
+
return arr
|
| 105 |
+
"""
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
# Get token embeddings for a code snippet
|
| 109 |
+
def get_token_embeddings(code):
|
| 110 |
+
inputs = tokenizer(code, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
| 111 |
+
with torch.no_grad():
|
| 112 |
+
outputs = model(**inputs)
|
| 113 |
+
token_embeddings = outputs.last_hidden_state.squeeze(0).cpu().numpy()
|
| 114 |
+
tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'].squeeze())
|
| 115 |
+
return token_embeddings, tokens
|
| 116 |
+
|
| 117 |
+
# Compare two algorithms and return PCA scatter plot
|
| 118 |
+
def compare_algorithms(algo1_name, algo2_name):
|
| 119 |
+
code1 = sorting_algorithms[algo1_name]
|
| 120 |
+
code2 = sorting_algorithms[algo2_name]
|
| 121 |
+
|
| 122 |
+
emb1, tokens1 = get_token_embeddings(code1)
|
| 123 |
+
emb2, tokens2 = get_token_embeddings(code2)
|
| 124 |
+
|
| 125 |
+
combined = np.concatenate([emb1, emb2], axis=0)
|
| 126 |
+
pca = PCA(n_components=2)
|
| 127 |
+
coords = pca.fit_transform(combined)
|
| 128 |
+
|
| 129 |
+
plt.figure(figsize=(6, 5), dpi=150)
|
| 130 |
+
plt.scatter(coords[:len(tokens1), 0], coords[:len(tokens1), 1], color='red', label=algo1_name, s=20)
|
| 131 |
+
plt.scatter(coords[len(tokens1):, 0], coords[len(tokens1):, 1], color='blue', label=algo2_name, s=20)
|
| 132 |
+
plt.legend()
|
| 133 |
+
plt.xticks([]); plt.yticks([]); plt.grid(False)
|
| 134 |
+
|
| 135 |
+
buf = BytesIO()
|
| 136 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 137 |
+
plt.close()
|
| 138 |
+
buf.seek(0)
|
| 139 |
+
return Image.open(buf)
|
| 140 |
+
|
| 141 |
+
# Gradio interface
|
| 142 |
+
interface = gr.Interface(
|
| 143 |
+
fn=compare_algorithms,
|
| 144 |
+
inputs=[
|
| 145 |
+
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 1"),
|
| 146 |
+
gr.Dropdown(choices=list(sorting_algorithms.keys()), label="Algorithm 2")
|
| 147 |
+
],
|
| 148 |
+
outputs=gr.Image(type="pil", label="Token Embedding PCA"),
|
| 149 |
+
title="GraphCodeBERT Token Embedding Comparison",
|
| 150 |
+
description="Visual comparison of token-level embeddings from GraphCodeBERT for classical sorting algorithms."
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
if __name__ == "__main__":
|
| 154 |
+
interface.launch()
|
| 155 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|