Spaces:
Sleeping
Sleeping
File size: 50,668 Bytes
ebc6cc2 afe32f0 ebc6cc2 afe32f0 adebd02 afe32f0 ebc6cc2 afe32f0 ebc6cc2 adebd02 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 ebc6cc2 afe32f0 adebd02 afe32f0 adebd02 afe32f0 ebc6cc2 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 ebc6cc2 afe32f0 adebd02 ebc6cc2 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 ebc6cc2 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 adebd02 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 adebd02 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 ebc6cc2 afe32f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
import os
import sys
import json
import streamlit as st
import warnings
import traceback
import logs
import chromadb
import hashlib
import sqlite3
import regex as re
from pinecone import Pinecone
from typing import Optional, Dict, Any
from sentence_transformers import util
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
warnings.filterwarnings("ignore")
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
from sentence_transformers import SentenceTransformer
from configuration import Configuration
from rag_scripts.rag_pipeline import RAGPipeline
from rag_scripts.documents_processing.chunking import PyMuPDFChunker
from rag_scripts.embedding.embedder import SentenceTransformerEmbedder
from rag_scripts.embedding.vector_db.chroma_db import chromaDBVectorDB
from rag_scripts.embedding.vector_db.faiss_db import FAISSVectorDB
from rag_scripts.embedding.vector_db.pinecone_db import PineconeVectorDB
from rag_scripts.llm.llmResponse import GROQLLM
from rag_scripts.evaluation.evaluator import RAGEvaluator
class RAGOperations:
VALID_VECTOR_DB = {'chroma', 'faiss', 'pinecone'}
@staticmethod
def check_db(vector_db_type: str, db_path: str, collection_name: str) -> bool:
try:
if vector_db_type not in RAGOperations.VALID_VECTOR_DB:
logs.logger.info(f"Invalid Vector DB: {vector_db_type}")
raise
if vector_db_type.lower() == 'pinecone':
pc = Pinecone(api_key=Configuration.PINECONE_API_KEY)
return collection_name in pc.list_indexes().names()
elif vector_db_type.lower() == 'chroma':
if not os.path.exists(db_path):
return False
client = chromadb.PersistentClient(path=db_path)
try:
client.get_collection(collection_name)
return True
except:
return False
elif vector_db_type.lower() == "faiss":
faiss_index_file = os.path.join(db_path, f"{collection_name}.faiss")
faiss_doc_store_file = os.path.join(db_path, f"{collection_name}_docs.pkl")
return os.path.exists(faiss_index_file) and os.path.exists(faiss_doc_store_file)
except Exception as ex:
traceback.print_exc()
logs.logger.info(f"Exception in checking {vector_db_type} existence")
return False
@staticmethod
def get_pipeline_params(chunk_size: Optional[int] =None,
chunk_overlap: Optional[int]=None,
embedding_model: Optional[str]=None,
vector_db_type: Optional[str]=None,
llm_model: Optional[str] = None,
temperature: Optional[float] = None,
top_p: Optional[float] = None,
max_tokens: Optional[int] = None,
re_ranker_model: Optional[str] = None,
use_tuned: bool = False) -> Dict[str, Any]:
try:
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': chunk_size if chunk_size is not None else Configuration.DEFAULT_CHUNK_SIZE,
'chunk_overlap': chunk_overlap if chunk_overlap is not None else Configuration.DEFAULT_CHUNK_OVERLAP,
'embedding_model_name': embedding_model if embedding_model is not None else Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL,
'vector_db_type': vector_db_type if vector_db_type is not None else "chroma",
'llm_model_name': llm_model if llm_model is not None else llm_model,
'db_path': None,
'collection_name': Configuration.COLLECTION_NAME,
'vector_db': None,
'temperature': temperature if temperature is not None else 0.1,
'top_p': top_p if top_p is not None else .95,
'max_tokens': max_tokens if max_tokens is not None else 1500,
're_ranker_model': re_ranker_model if re_ranker_model is not None else Configuration.DEFAULT_RERANKER,
}
if use_tuned and os.path.exists(best_param_path):
with open(best_param_path, 'rb') as f:
best_params = json.load(f)
logs.logger.info(f"Best params: {best_params} from the file {best_param_path}")
params.update({
'vector_db_type': best_params.get('vector_db_type', params['vector_db_type']),
'embedding_model_name': best_params.get('embedding_model', params['embedding_model_name']),
'chunk_overlap': best_params.get('chunk_overlap', params['chunk_overlap']),
'chunk_size': best_params.get('chunk_size', params['chunk_size']),
're_ranker_model': best_params.get('re_ranker_model', params['re_ranker_model'])})
use_tuned = True
if use_tuned:
tuned_db_type = params['vector_db_type']
params['db_path'] = os.path.join(Configuration.DATA_DIR, 'TunedDB',
tuned_db_type) if tuned_db_type != 'pinecone' else ""
params['collection_name'] = 'tuned-' + Configuration.COLLECTION_NAME
if tuned_db_type in ['chroma', 'faiss']:
os.makedirs(params['db_path'], exist_ok=True)
logs.logger.info(f"Tuned db path: {params['db_path']}")
else:
params['db_path'] = (Configuration.CHROMA_DB_PATH if params['vector_db_type'] == 'chroma'
else Configuration.FAISS_DB_PATH if params['vector_db_type'] == 'faiss'
else "")
if params['vector_db_type'] in ['chroma', 'faiss']:
os.makedirs(params['db_path'], exist_ok=True)
logs.logger.info(f"Created directory for {params['vector_db_type']} at {params['db_path']}")
return params
except Exception as ex:
logs.logger.info(f"Exception in get_pipeline_params: {ex}")
traceback.print_exc()
@staticmethod
def check_embedding_dimension(vector_db_type: str, db_path: str,
collection_name: str, embedding_model: str) -> bool:
if vector_db_type != 'chroma':
return True
try:
client = chromadb.PersistentClient(path=db_path)
collection = client.get_collection(collection_name)
model = SentenceTransformer(embedding_model)
sample_embedding = model.encode(["test"])[0]
try:
expected_dim = collection._embedding_function.dim
except AttributeError:
peek_result = collection.peek(limit=1)
if 'embedding' in peek_result and peek_result['embedding']:
expected_dim = len(peek_result['embedding'][0])
else:
return False
actual_dim = len(sample_embedding)
logs.logger.info(f"Expected dimension: {expected_dim} Actual dimension: {actual_dim}")
return expected_dim == actual_dim
except Exception as ex:
logs.logger.info(f"Error checking embedding dimension: {ex}")
return False
@staticmethod
def initialize_pipeline(params: dict[str, Any]) -> RAGPipeline:
try:
embedder = SentenceTransformerEmbedder(model_name=params['embedding_model_name'])
chunkerObj = PyMuPDFChunker(
pdf_path=params['document_path'],
chunk_size=params['chunk_size'],
chunk_overlap=params['chunk_overlap'])
llm_model = params['llm_model_name']
vector_db = None
if params['vector_db_type'] == 'chroma':
vector_db = chromaDBVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
elif params['vector_db_type'] == 'faiss':
vector_db = FAISSVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
elif params['vector_db_type'] == 'pinecone':
vector_db = PineconeVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
else:
raise ValueError(f"Unknown vector_db_type: {params['vector_db_type']}")
return RAGPipeline(document_path=params['document_path'],
chunker=chunkerObj, embedder=embedder,
vector_db=vector_db,
llm=GROQLLM(model_name=llm_model),
re_ranker_model_name=params['re_ranker_model'] if params[
're_ranker_model'] else Configuration.DEFAULT_RERANKER, )
except Exception as ex:
logs.logger.info(f"Exception in pipeline initialize: {ex}")
traceback.print_exc()
sys.exit(1)
@staticmethod
def run_build_job(chunk_size: Optional[int] = None,
chunk_overlap: Optional[int] = None,
embedding_model: Optional[str] = None,
vector_db_type: Optional[str]= None,
llm_model: Optional[str]= None,
temperature: Optional[float]= None,
top_p: Optional[float]= None,
max_tokens: Optional[int]= None,
re_ranker_model: Optional[str] =None,
use_tuned: bool = False) -> None:
try:
params = RAGOperations.get_pipeline_params(chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
embedding_model=embedding_model,
vector_db_type=vector_db_type,
llm_model=llm_model,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
re_ranker_model=re_ranker_model,
use_tuned=use_tuned)
pipeline = RAGOperations.initialize_pipeline(params)
pipeline.build_index()
logs.logger.info(f"RAG Build JOB completed")
except Exception as ex:
logs.logger.info(f"Exception in run build job: {ex}")
traceback.print_exc()
raise
@staticmethod
def run_search_job(query: Optional[str] = None,
k: int = 5, raw: bool = False,
use_tuned: bool = False,
llm_model: Optional[str]= None,
user_context: Optional[Dict[str,str]] = None,
temperature: Optional[float]= None,
top_p: Optional[float]= None,
max_tokens: Optional[int]= None,
chunk_size: Optional[int]= None,
chunk_overlap: Optional[int]= None,
embedding_model: Optional[str]= None,
vector_db_type: Optional[str]= None,
re_ranker_model: Optional[str]= None,
use_rag:bool = True) -> Dict[str, Any]:
try:
params = RAGOperations.get_pipeline_params(chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
embedding_model=embedding_model,
vector_db_type=vector_db_type,
llm_model=llm_model,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
re_ranker_model=re_ranker_model,
use_tuned=use_tuned)
vector_db_type = params['vector_db_type']
db_path = params['db_path']
collection_name = params['collection_name']
pipeline = RAGOperations.initialize_pipeline(params)
db_exists = RAGOperations.check_db(vector_db_type, db_path, collection_name)
if use_rag:
if not db_exists:
pipeline.build_index()
elif pipeline.vector_db.count_documents() == 0:
pipeline.build_index()
elif not RAGOperations.check_embedding_dimension(vector_db_type, db_path,
collection_name, params['embedding_model_name']):
logs.logger.info(f"Embedding dimension mismatch. rebuilding the index")
pipeline.vector_db.delete_collection(collection_name)
pipeline.build_index()
else:
logs.logger.info(f"Using existing {vector_db_type} database with collection: {collection_name}")
if pipeline.vector_db.count_documents() == 0:
logs.logger.info(f"No Documents found in vector database after re-build")
sys.exit(1)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
user_query = query if query else (
input("Enter your Query: "))
if user_query.lower() == 'exit':
return
expected_answers = None
expected_keywords = []
query_found = False
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data = json.load(f)
for item in eval_data:
if item.get('query').strip().lower() == user_query.strip().lower():
expected_keywords = item.get('expected_keywords', [])
expected_answers = item.get('expected_answer_snippet', "")
query_found = True
break
if not expected_keywords and not expected_answers:
logs.logger.info(f"No evaluation data found for query in json")
except Exception as ex:
logs.logger.info(f"No json file : {ex}")
retrieved_documents = []
if raw:
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=k * 2)
logs.logger.info("Raw documents retrieved")
logs.logger.info(json.dumps(retrieved_documents, indent=4))
if not retrieved_documents:
response = {"summary": "No relevant documents found",
"sources": []}
else:
query_embedding = evaluator.embedder.encode(user_query,
convert_to_tensor=True, normalize_embeddings=True)
similarities = [(doc, util.cos_sim(query_embedding,
evaluator.embedder.encode(doc['content'],
convert_to_tensor=True,
normalize_embeddings=True)).item())
for doc in retrieved_documents]
similarities.sort(key=lambda x: x[1], reverse=True)
top_docs = similarities[:min(3, len(similarities))]
truncated_content = []
for doc, sim in top_docs:
content_paragraphs = re.split(r'\n\s*\n', doc['content'].strip())
para_sims = [(para, util.cos_sim(query_embedding,
evaluator.embedder.encode(para.strip(), convert_to_tensor=True,
normalize_embeddings=True)).item())
for para in content_paragraphs if para.strip()]
para_sims.sort(key=lambda x: x[1], reverse=True)
top_paras = [para for para, para_sim in para_sims[:2] if para_sim >= 0.3]
if len(top_paras) < 1: # Fallback to at least one paragraph
top_paras = [para for para, _ in para_sims[:1]]
truncated_content.append('\n\n'.join(top_paras))
response = {
"summary": "\n".join(truncated_content),
"sources": [{"document_id": f"DOC {idx + 1}",
"page": str(doc['metadata'].get("page_number", "NA")),
"section": doc['metadata'].get("section", "NA"),
"clause": doc['metadata'].get("clause", "NA")}
for idx, (doc, _) in enumerate(top_docs)]}
else:
logs.logger.info("LLM+RAG")
response = pipeline.query(user_query, k=k,
include_metadata=True,
user_context=user_context
)
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=k)
final_expected_answer = expected_answers if expected_answers is not None else ""
additional_eval_metrices = {}
if not query_found:
logs.logger.info(f"No query found in eval_Data.json: {user_query}")
raw_reference_for_score = evaluator._syntesize_raw_reference(retrieved_documents)
if not final_expected_answer.strip():
final_expected_answer = raw_reference_for_score
retrieved_documents_content = [doc.get('content', '') for doc in retrieved_documents]
llm_as_judge = evaluator._evaluate_with_llm(user_query,
response.get('summary', ''),
retrieved_documents_content)
if llm_as_judge:
additional_eval_metrices.update(llm_as_judge)
output = {"query": user_query, "response": response, "evaluation": llm_as_judge}
logs.logger.info(json.dumps(output, indent=4))
return output
else:
output = {"query": user_query, "response": response, "evaluation": llm_as_judge}
logs.logger.info(json.dumps(output, indent=4))
return output
else:
eval_result = evaluator.evaluate_response(user_query, response, retrieved_documents,
expected_keywords, expected_answers)
output = {"query": user_query, "response": response, "evaluation": eval_result}
logs.logger.info(json.dumps(output, indent=2, ensure_ascii=False))
return output
except Exception as ex:
logs.logger.info(f"Exception in run search job {ex}")
traceback.print_exc()
@staticmethod
def run_hypertune_job(llm_model: Optional[str] = None,
search_type: str = "random",
n_iter: int = 3) -> Dict[str,Any]:
try:
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
result = evaluator.evaluate_combined_params_grid(
chunk_size_to_test=[512, 1024, 2048],
chunk_overlap_to_test=[100, 200, 400],
embedding_models_to_test=["all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2",
"multi-qa-mpnet-base-dot-v1"],
vector_db_types_to_test=['pinecone'],
llm_model_name=llm_model,
re_ranker_model=["cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2"],
search_type=search_type,
n_iter=n_iter)
best_parameter = result['best_params']
best_score = result['best_score']
pkl_file = result['pkl_file']
best_metrics = result['best_metrics']
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
with open(best_param_path, 'w') as f:
json.dump(best_parameter, f, indent=4)
tuned_db = best_parameter['vector_db_type']
tuned_path = os.path.join(Configuration.DATA_DIR, 'TunedDB', tuned_db)
if tuned_db != 'pinecone':
os.makedirs(tuned_path, exist_ok=True)
tuned_collection_name = "tuned-" + Configuration.COLLECTION_NAME
tuned_params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
'chunk_overlap': best_parameter.get('chunk_overlap', Configuration.DEFAULT_CHUNK_OVERLAP),
'embedding_model_name': best_parameter.get('embedding_model',
Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
'vector_db_type': tuned_db,
'llm_model_name': llm_model,
'db_path': tuned_path if tuned_db != 'pinecone' else "",
'collection_name': tuned_collection_name,
'vector_db': None,
're_ranker_model': best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
}
if 're_ranker_model' in best_parameter:
tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
else:
tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER
tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
tuned_pipeline.build_index()
return result
except Exception as ex:
logs.logger.info(f"Exception in hypertune: {ex} ")
traceback.print_exc()
@staticmethod
def run_llm_with_prompt(run_type: str,
temperature: float=0.1,
top_p: float=0.95,
max_tokens=1500) -> None:
try:
params = RAGOperations.get_pipeline_params()
pipeline = RAGOperations.initialize_pipeline(params)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
system_message = (
"You are an expert assistant for Flykite Airlines HR Policy Queries."
"Provide concise, accurate and policy-specific answers based solely on the the provided context."
"Structured your response clearly, using bullet points, newlines if applicable. "
"If the context lacks information, state that clearly and speculation."
) if run_type == 'prompting' else None
user_query = input("Enter your query: ")
expected_answer = None
expected_keywords = []
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data = json.load(f)
for item in eval_data:
expected_answer = item.get('expected_answer_snippet', "")
expected_keywords = item.get('expected_keywords', [])
break
except Exception as ex:
logs.logger.info(f"Error loading eval_data.json for query {user_query}: {ex}")
if run_type == 'prompting':
prompt = (
f"You are an expert assistant for Flykite Airlines HR Policy Queries."
f"Answer the following question with a structured response, using bullet points or sections where applicable"
f"Base your answer solely on the query and avoid hallucination"
f"Question: \n {user_query} \n"
f"Answer: ")
else:
prompt = user_query
response = pipeline.llm.generate_response(
prompt=prompt,
system_message=system_message,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens
)
retreived_documents = []
eval_result = evaluator.evaluate_response(user_query,
response,
retreived_documents,
expected_keywords,
expected_answer)
output = {"query": user_query,
"response": {
"summary: ": response.strip(),
"source: ": ["LLM Response Not RAG loaded"]},
"evaluation": eval_result}
logs.logger.info(json.dumps(output, indent=2))
return output
except Exception as ex:
logs.logger.info(f"Exception in LLm_prompting response: {ex}")
traceback.print_exc()
return {"error": str(ex)}
@staticmethod
def login() -> Dict[str, str]:
username = input("Enter your username: ")
password = input("Enter your password: ")
hashed_password = hashlib.sha256(password.encode()).hexdigest()
try:
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute(
"SELECT username,jobrole,department,location FROM users WHERE username = ? AND password = ?",
(username, hashed_password)
)
user = cursor.fetchone()
logs.logger.info(f"{user}")
conn.close()
if user:
return {"username": user[0], "role": user[1], "department": user[2], "location": user[3]}
else:
logs.logger.info("Invalid username or password")
sys.exit(1)
except sqlite3.Error as ex:
return False
@staticmethod
def authenticate_user(username, password) -> Optional[Dict[str, str]]:
hashed_password = hashlib.sha256(password.encode()).hexdigest()
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute(
"SELECT username, jobrole, department, location FROM users WHERE username = ? AND password = ?",
(username, hashed_password)
)
user = cursor.fetchone()
conn.close()
if user:
return {"username": user[0], "role": user[1], "department": user[2], "location": user[3]}
return None
@staticmethod
def home_page():
st.title("Welcome to Flykite RAG System")
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if 'user_info' not in st.session_state:
st.session_state.user_info = None
if not st.session_state.logged_in:
st.subheader("Login")
with st.form("login_form"):
username = st.text_input("Username")
password = st.text_input("Password", type="password")
login_button = st.form_submit_button("Login")
if login_button:
user_data = RAGOperations.authenticate_user(username, password)
if user_data:
st.session_state.logged_in = True
st.session_state.user_info = user_data
st.session_state.user_context = {
"role": user_data['role'],
"department": user_data['department'],
"location": user_data['location']
}
st.success(f"Logged in as {user_data['username']} ({user_data['role']})")
# No rerun needed here, the main_app will handle navigation
st.session_state.page = "User" if user_data['role'] != 'admin' else "Admin"
st.rerun()
else:
st.error("Invalid username or password.")
else:
st.write(
f"You are logged in as **{st.session_state.user_info['username']}** (Role: **{st.session_state.user_info['role']}**)")
if st.button("Logout"):
st.session_state.logged_in = False
st.session_state.user_info = None
st.session_state.user_context = None
st.session_state.page = "Home" # Redirect to home on logout
st.rerun()
@staticmethod
@staticmethod
def admin_page():
st.title("Admin Dashboard")
st.write(f"Logged in as: {st.session_state.user_info['username']} (Role: {st.session_state.user_info['role']})")
if st.session_state.user_info and st.session_state.user_info['role'] == 'admin':
st.header("RAG Hypertuning")
st.info("Run hyperparameter tuning to find the best RAG configuration and build a tuned index.")
with st.form("hypertune_form"):
st.write("Hypertuning parameters:")
llm_model_ht = st.selectbox("LLM Model for Hypertuning Evaluation",
options=["llama-3.3-70b-versatile", "llama-3.1-8b-instant"],
index=["llama-3.3-70b-versatile", "llama-3.1-8b-instant"].index(
Configuration.DEFAULT_GROQ_LLM_MODEL) if Configuration.DEFAULT_GROQ_LLM_MODEL in [
"llama-3.3-70b-versatile", "llama-3.1-8b-instant"] else 0,
key="llm_model_ht_select")
# New inputs for hyperparameter tuning
st.subheader("Hyperparameter Ranges/Options:")
chunk_sizes = st.multiselect("Chunk Sizes to Test (e.g., 256, 512, 1024)",
options=[512, 1024,2048],
default=[512],
key="chunk_sizes_ht")
chunk_overlaps = st.multiselect("Chunk Overlaps to Test (e.g., 50, 100, 200)",
options=[150,200,400],
default=[150],
key="chunk_overlaps_ht")
embedding_models = st.multiselect("Embedding Models to Test",
options=["all-MiniLM-L6-v2", "all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2", "multi-qa-mpnet-base-dot-v1"],
default=["all-MiniLM-L6-v2", "all-mpnet-base-v2"],
key="embedding_models_ht")
re_ranker_models = st.multiselect("Re-ranker Models to Test",
options=["cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2", "None"],
default=["cross-encoder/ms-marco-MiniLM-L-6-v2"],
key="re_ranker_models_ht")
vector_db_types = st.multiselect("Vector DB Types to Test",
options=['chroma', 'faiss', 'pinecone'],
default=['chroma'],
key="vector_db_types_ht")
search_type = st.radio("Hypertuning Search Type",
options=["random", "grid"],
index=0, # Default to random
key="search_type_ht")
n_iter = st.number_input("Number of Hyper-tuning Iterations (for Random Search)",
min_value=1, value=3, step=1,
help="Only applicable for 'Random' search type.",
key="n_iter_ht")
hypertune_button = st.form_submit_button("Run Hypertune Job")
if hypertune_button:
if not chunk_sizes or not chunk_overlaps or not embedding_models or not re_ranker_models or not vector_db_types:
st.error("Please select at least one option for all hyperparameter categories.")
else:
# Handle 'None' for re-ranker model: remove "None" string and pass None object if needed
final_re_ranker_models = [
None if model == "None" else model for model in re_ranker_models
]
st.write("Starting RAG Hypertuning. This may take a while...")
with st.spinner("Running hypertuning..."):
try:
result = RAGOperations.run_hypertune_job(
llm_model=llm_model_ht,
chunk_size_to_test=chunk_sizes,
chunk_overlap_to_test=chunk_overlaps,
embedding_models_to_test=embedding_models,
re_ranker_model=final_re_ranker_models,
vector_db_types_to_test=vector_db_types,
search_type=search_type,
n_iter=n_iter if search_type == "random" else None # n_iter only for random search
)
if result and "error" not in result:
st.success("Hypertuning completed and tuned index built!")
st.subheader("Best Parameters Found:")
st.json(result.get('best_params', {}))
if 'best_score' in result:
st.write(f"Best Score: {result['best_score']:.4f}")
if 'best_metrics' in result:
st.subheader("Best Metrics:")
st.json(result['best_metrics'])
else:
st.error(f"Hypertuning failed: {result.get('error', 'Unknown error')}")
except Exception as e:
st.error(f"An unexpected error occurred during hypertuning: {e}")
st.exception(e) # Display full traceback in Streamlit
st.header("RAG Testing")
st.info("Test the RAG pipeline with a specific query, optionally using the tuned database.")
with st.form("rag_test_form"):
test_query = st.text_area("Enter a test query for the RAG system:",
value="What is the policy on annual leave?",
key="test_query_input")
use_tuned_db = st.checkbox("Use Tuned RAG Database (if hypertuned previously)", value=True,
key="use_tuned_db_checkbox")
display_raw = st.checkbox("Display Raw Retrieved Documents only (no LLM)",
key="display_raw_docs_checkbox")
k_value = st.slider("Number of documents to retrieve (k)", min_value=1, max_value=10, value=5,
key="k_value_slider")
test_rag_button = st.form_submit_button("Run RAG Test Query")
if test_rag_button:
st.write("Running RAG test query...")
with st.spinner("Getting RAG response..."):
try:
result = RAGOperations.run_search_job(
query=test_query,
k=k_value,
raw=display_raw,
use_tuned=use_tuned_db,
llm_model=st.session_state.get('llm_model_ht_select',
Configuration.DEFAULT_GROQ_LLM_MODEL),
user_context=st.session_state.user_context
)
if result and "error" not in result:
st.success("RAG Test Query Completed!")
st.subheader("RAG Response:")
if display_raw:
st.json(result.get('response', {}))
else:
response_data = result.get('response', {})
if 'summary' in response_data:
st.write(response_data['summary'])
if 'sources' in response_data and response_data['sources']:
st.subheader("Sources:")
for source in response_data['sources']:
if isinstance(source, dict):
st.markdown(
f"- **Document ID:** {source.get('document_id', 'N/A')}, **Page:** {source.get('page', 'N/A')}, **Section:** {source.get('section', 'N/A')}, **Clause:** {source.get('clause', 'N/A')}")
else:
st.markdown(f"- {source}")
else:
st.json(response_data)
if 'evaluation' in result:
st.subheader("Evaluation Results:")
st.json(result['evaluation'])
else:
st.error(f"RAG test query failed: {result.get('error', 'Unknown error')}")
except Exception as e:
st.error(f"An unexpected error occurred during RAG test: {e}")
st.exception(e)
else:
st.warning("You do not have administrative privileges to view this page.")
if st.button("Go to User Page"):
st.session_state.page = "User"
st.rerun()
@staticmethod
def run_hypertune_job(llm_model: Optional[str] = None,
chunk_size_to_test: Optional[list[int]] = None, # Added parameter
chunk_overlap_to_test: Optional[list[int]] = None, # Added parameter
embedding_models_to_test: Optional[list[str]] = None, # Added parameter
vector_db_types_to_test: Optional[list[str]] = None, # Added parameter
re_ranker_model: Optional[list[str]] = None, # Added parameter
search_type: str = "random",
n_iter: Optional[int] = 3) -> Dict[str, Any]:
try:
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
result = evaluator.evaluate_combined_params_grid(
chunk_size_to_test=chunk_size_to_test if chunk_size_to_test is not None else [512, 1024, 2048],
chunk_overlap_to_test=chunk_overlap_to_test if chunk_overlap_to_test is not None else [100, 200, 400],
embedding_models_to_test=embedding_models_to_test if embedding_models_to_test is not None else [
"all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2",
"multi-qa-mpnet-base-dot-v1"],
vector_db_types_to_test=vector_db_types_to_test if vector_db_types_to_test is not None else ['chroma'],
llm_model_name=llm_model,
re_ranker_model=re_ranker_model if re_ranker_model is not None else [
"cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2"],
search_type=search_type,
n_iter=n_iter)
best_parameter = result['best_params']
best_score = result['best_score']
pkl_file = result['pkl_file']
best_metrics = result['best_metrics']
best_param_path = os.path.join(Configuration.DATA_DIR, 'best_params.json')
with open(best_param_path, 'w') as f:
json.dump(best_parameter, f, indent=4)
tuned_db = best_parameter['vector_db_type']
tuned_path = os.path.join(Configuration.DATA_DIR, 'TunedDB', tuned_db)
if tuned_db != 'pinecone':
os.makedirs(tuned_path, exist_ok=True)
tuned_collection_name = "tuned-" + Configuration.COLLECTION_NAME
tuned_params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
'chunk_overlap': best_parameter.get('chunk_overlap', Configuration.DEFAULT_CHUNK_OVERLAP),
'embedding_model_name': best_parameter.get('embedding_model',
Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
'vector_db_type': tuned_db,
'llm_model_name': llm_model,
'db_path': tuned_path if tuned_db != 'pinecone' else "",
'collection_name': tuned_collection_name,
'vector_db': None,
're_ranker_model': best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
}
if 're_ranker_model' in best_parameter:
tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
else:
tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER
tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
tuned_pipeline.build_index()
return result
except Exception as ex:
logs.logger.info(f"Exception in hypertune: {ex} ")
traceback.print_exc()
return {"error": str(ex)} # Return error for Streamlit to display
@staticmethod
def user_page():
st.title("Flykite HR Policy Query")
st.write(f"Logged in as: {st.session_state.user_info['username']} (Role: {st.session_state.user_info['role']})")
st.info("Ask any question about the Flykite Airlines HR policy document.")
with st.form("user_query_form"):
user_query = st.text_area("Your Query:", height=100, key="user_query_input")
response_type = st.radio("Choose Response Type:",
options=["LLM Tuned Response (RAG + LLM)",
"RAG Raw Response (Retrieved Docs Only)"],
index=0, key="response_type_radio")
k_value_user = st.slider("Number of documents to consider (k)", min_value=1, max_value=10, value=5,
key="k_value_user_slider")
submit_query_button = st.form_submit_button("Get Answer")
if submit_query_button and user_query:
st.subheader("Response:")
with st.spinner("Fetching answer..."):
try:
display_raw = (response_type == "RAG Raw Response (Retrieved Docs Only)")
# Direct call to RAGOperations.run_search_job
result = RAGOperations.run_search_job(
query=user_query,
raw=display_raw,
k=k_value_user,
use_tuned=True, # User page always uses tuned if available
user_context=st.session_state.user_context # Pass user context
)
if result and "error" not in result:
response_data = result.get('response', {})
evaluation = result.get('evaluation',{})
if display_raw:
st.json(response_data) # Raw output from main.py is already formatted
else:
if 'summary' in response_data:
st.markdown(response_data['summary'])
if 'sources' in response_data and response_data['sources']:
st.subheader("Sources:")
for source in response_data['sources']:
if isinstance(source, dict):
st.markdown(
f"- **Document ID:** {source.get('document_id', 'N/A')}, **Page:** {source.get('page', 'N/A')}, **Section:** {source.get('section', 'N/A')}, **Clause:** {source.get('clause', 'N/A')}")
else: # Fallback for raw string sources
st.markdown(f"- {source}")
else:
st.json(response_data)
if evaluation:
#st.markdown(f"**Evaluation Results:** **Groundedness Score** {evaluation.get('Groundedness score', 'N/A')}, **Relevance Score:** {evaluation.get('Relevance score', 'N/A')}, **Reasoning** {evaluation.get('Reasoning', 'N/A')}")
st.json(evaluation)
else:
st.error(
f"Failed to get a response: {result.get('error', 'Unknown error')}. Please try again.")
except Exception as e:
st.error(f"An unexpected error occurred during user query: {e}")
st.error(traceback.format_exc())
elif submit_query_button and not user_query:
st.warning("Please enter a query.")
def main_app():
st.sidebar.title("Navigation")
if 'logged_in' not in st.session_state:
st.session_state.logged_in = False
if 'page' not in st.session_state:
st.session_state.page = "Home"
if not st.session_state.logged_in:
st.session_state.page = "Home"
RAGOperations.home_page()
else:
st.sidebar.button("Home", on_click=lambda: st.session_state.update(page="Home"))
if st.session_state.user_info and st.session_state.user_info['role'] == 'admin':
st.sidebar.button("Admin Dashboard", on_click=lambda: st.session_state.update(page="Admin"))
st.sidebar.button("User Query", on_click=lambda: st.session_state.update(page="User"))
else:
st.sidebar.button("User Query", on_click=lambda: st.session_state.update(page="User"))
if st.session_state.page == "Home":
RAGOperations.home_page()
elif st.session_state.page == "Admin":
RAGOperations.admin_page()
elif st.session_state.page == "User":
RAGOperations.user_page()
if __name__ == "__main__":
main_app()
|