File size: 24,228 Bytes
afe32f0
ebc6cc2
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
adebd02
 
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
adebd02
ebc6cc2
 
 
adebd02
 
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
adebd02
ebc6cc2
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
adebd02
ebc6cc2
 
 
 
adebd02
 
ebc6cc2
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
adebd02
ebc6cc2
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
adebd02
ebc6cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adebd02
ebc6cc2
 
 
 
adebd02
ebc6cc2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import streamlit
import os
import sys
import json
import argparse
import warnings
import traceback
import logs
import chromadb
import hashlib
import sqlite3
import regex as re
from pinecone import Pinecone
from typing import Optional, Dict, Any
from sentence_transformers import SentenceTransformer, util

os.environ["TF_CPP_MIN_LOG_LEVEL"]="3"
warnings.filterwarnings("ignore")

sys.path.insert(0,os.path.abspath(os.path.join(os.path.dirname(__file__),'src')))
from sentence_transformers import SentenceTransformer
from configuration import Configuration
from rag_scripts.rag_pipeline import RAGPipeline
from rag_scripts.documents_processing.chunking import PyMuPDFChunker
from rag_scripts.embedding.embedder import SentenceTransformerEmbedder
from rag_scripts.embedding.vector_db.chroma_db import chromaDBVectorDB
from rag_scripts.embedding.vector_db.faiss_db import FAISSVectorDB
from rag_scripts.embedding.vector_db.pinecone_db import PineconeVectorDB
from rag_scripts.llm.llmResponse import GROQLLM
from rag_scripts.evaluation.evaluator import RAGEvaluator

class RAGOperations:
    VALID_VECTOR_DB = {'chroma','faiss','pinecone'}

    @staticmethod
    def check_db(vector_db_type: str, db_path: str, collection_name: str) -> bool:
        try:
            if vector_db_type not in RAGOperations.VALID_VECTOR_DB:
                logs.logger.info(f"Invalid Vector DB: {vector_db_type}")
                raise
            if vector_db_type.lower() == 'pinecone':
                pc = Pinecone(api_key=Configuration.PINECONE_API_KEY)
                return collection_name in pc.list_indexes().names()
            elif vector_db_type.lower() == 'chroma':
                return os.path.exists(db_path) and os.listdir(db_path)
            elif vector_db_type.lower() == "faiss":
                faiss_index_file = os.path.join(db_path,f"{collection_name}.faiss")
                faiss_doc_store_file = os.path.join(db_path,f"{collection_name}_docs.pkl")
                return os.path.exists(faiss_index_file) and os.path.exists(faiss_doc_store_file)
        except Exception as ex:
            logs.logger.info(f"Exception in checking {vector_db_type} existence")
            logs.logger.info(traceback.print_exc())
            return False

    @staticmethod
    def get_pipeline_params(args: argparse.Namespace, use_tuned: bool = False) -> Dict[str,Any]:
        try:
            best_param_path = os.path.join(Configuration.DATA_DIR,'best_params.json')
            params = {
                'document_path':Configuration.FULL_PDF_PATH,
                'chunk_size':args.chunk_size,
                'chunk_overlap':args.chunk_overlap,
                'embedding_model_name':args.embedding_model,
                'vector_db_type':args.vector_db_type,
                'llm_model_name':args.llm_model,
                'db_path': None,
                'collection_name': Configuration.COLLECTION_NAME,
                'vector_db': None,
                'temperature': args.temperature,
                'top_p':args.top_p,
                'max_tokens':args.max_tokens,
                're_ranker_model':args.re_ranker_model
            }

            if os.path.exists(best_param_path):
                with open(best_param_path,'rb') as f:
                    best_params = json.load(f)
                logs.logger.info(f"Best params: {best_params} from the file {best_param_path}")

                params.update({
                    'vector_db_type': best_params.get('vector_db_type',params['vector_db_type']),
                    'embedding_model_name': best_params.get('embedding_model',params['embedding_model_name']),
                    'chunk_overlap': best_params.get('chunk_overlap',params['chunk_overlap']),
                    'chunk_size': best_params.get('chunk_size',params['chunk_size']) ,
                    're_ranker_model': best_params.get('re_ranker_model',params['re_ranker_model']) })
                use_tuned = True

            if use_tuned:
                tuned_db_type = params['vector_db_type']
                params['db_path'] = os.path.join(Configuration.DATA_DIR,'TunedDB',tuned_db_type) if tuned_db_type != 'pinecone' else ""
                params['collection_name'] = 'tuned-'+Configuration.COLLECTION_NAME
                if tuned_db_type in  ['chroma','faiss']:
                    os.makedirs(params['db_path'],exist_ok=True)
                logs.logger.info(f"Tuned db path: {params['db_path']}")
            else:
                params['db_path'] = ( Configuration.CHROMA_DB_PATH if params['vector_db_type'] == 'chroma'
                                      else Configuration.FAISS_DB_PATH if params['vector_db_type'] == 'faiss'
                                      else "")
                if params['vector_db_type'] in ['chroma', 'faiss']:
                    os.makedirs(params['db_path'],exist_ok=True)
                    logs.logger.info(f"Created directory for {params['vector_db_type']} at {params['db_path']}")

            return params
        except Exception as ex:
            logs.logger.info(f"Exception in get_pipeline_params: {ex}")
            logs.logger.info(traceback.print_exc())
            sys.exit(1)


    @staticmethod
    def check_embedding_dimension(vector_db_type: str,db_path: str,

                                  collection_name: str, embedding_model: str) -> bool:
        if vector_db_type !='chroma':
            return True
        try:
            client = chromadb.PersistentClient(path=db_path)
            collection = client.get_collection(collection_name)
            model = SentenceTransformer(embedding_model)
            sample_embedding = model.encode(["test"])[0]
            try:
                expected_dim = collection._embedding_function.dim
            except AttributeError:
                peek_result = collection.peek(limit=1)
                if 'embedding' in peek_result and peek_result['embedding']:
                    expected_dim = len(peek_result['embedding'][0])
                else:
                    return False
            actual_dim = len(sample_embedding)
            logs.logger.info(f"Expected dimension: {expected_dim} Actual dimension: {actual_dim}")
            return expected_dim == actual_dim
        except Exception as ex:
            logs.logger.info(f"Error checking embedding dimension: {ex}")
            return False


    @staticmethod
    def initialize_pipeline(params: dict[str,Any]) -> RAGPipeline:
        try:
            embedder = SentenceTransformerEmbedder(model_name=params['embedding_model_name'])
            chunkerObj = PyMuPDFChunker(
                pdf_path=params['document_path'],
                chunk_size=params['chunk_size'],
                chunk_overlap=params['chunk_overlap'])
            llm_model = params['llm_model_name']
            vector_db = None
            if params['vector_db_type'] == 'chroma':
                vector_db = chromaDBVectorDB(embedder=embedder,
                                db_path=params['db_path'],
                                collection_name=params['collection_name'])
            elif params['vector_db_type'] == 'faiss':
                vector_db = FAISSVectorDB(embedder=embedder,
                                db_path=params['db_path'],
                                collection_name=params['collection_name'] )
            elif params['vector_db_type'] == 'pinecone':
                vector_db = PineconeVectorDB(embedder=embedder,
                                db_path=params['db_path'],
                                collection_name=params['collection_name'])
            else:
                raise ValueError(f"Unknown vector_db_type: {params['vector_db_type']}")

            return RAGPipeline( document_path=params['document_path'],
                chunker=chunkerObj, embedder=embedder,
                vector_db=vector_db,
                llm=GROQLLM(model_name= llm_model),
                re_ranker_model_name=params['re_ranker_model'] if params['re_ranker_model'] else Configuration.DEFAULT_RERANKER,)
        except Exception as ex:
            logs.logger.info(f"Exception in pipeline initialize: {ex}")
            traceback.print_exc()
            sys.exit(1)

    @staticmethod
    def run_build_job(args: argparse.Namespace) -> None:
        try:
            params = RAGOperations.get_pipeline_params(args)
            pipeline = RAGOperations.initialize_pipeline(params)
            pipeline.build_index()
            logs.logger.info(f"RAG Build JOB completed")
        except Exception as ex:
            logs.logger.info(f"Exception in run build job: {ex}")
            traceback.print_exc()
            sys.exit(1)


    @staticmethod
    def run_search_job(args: argparse.Namespace,user_info: Dict[str,str]) -> None:
        try:
            params = RAGOperations.get_pipeline_params(args, use_tuned=args.use_tuned)
            vector_db_type = params['vector_db_type']
            db_path = params['db_path']
            collection_name = params['collection_name']

            pipeline = RAGOperations.initialize_pipeline(params)
            db_exists = RAGOperations.check_db(vector_db_type,db_path,collection_name)

            if args.use_rag:
                if not db_exists:
                    pipeline.build_index()
                elif pipeline.vector_db.count_documents() == 0:
                    pipeline.build_index()
                elif not RAGOperations.check_embedding_dimension(vector_db_type,db_path,
                                                                 collection_name,params['embedding_model_name'] ):
                    logs.logger.info(f"Embedding dimension mismatch. rebuilding the index")
                    pipeline.vector_db.delete_collection(collection_name)
                    pipeline.build_index()

                else:
                    logs.logger.info(f"Using existing {vector_db_type} database with collection: {collection_name}")

                if pipeline.vector_db.count_documents() == 0:
                    logs.logger.info(f"No Documents found in vector database after re-build")
                    sys.exit(1)

            evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
                                     pdf_path=Configuration.FULL_PDF_PATH)

            user_query = args.query if args.query else  (
                            input("Enter your Query: "))
            if user_query.lower() == 'exit':
                return
            user_context = {"role": user_info['role'],
                            "location": user_info['location'],
                            "department":user_info['department'] }

            expected_answers = None
            expected_keywords = []
            query_found = False
            try:
                with open(Configuration.EVAL_DATA_PATH, 'r') as f:
                    eval_data = json.load(f)
                for item in eval_data:
                    if item.get('query').strip().lower() == user_query.strip().lower():
                        expected_keywords = item.get('expected_keywords',[])
                        expected_answers = item.get('expected_answer_snippet',"")
                        query_found = True
                        break
                if not expected_keywords and not expected_answers:
                    logs.logger.info(f"No evaluation data found for query in json")
            except Exception as ex:
                logs.logger.info(f"No json file : {ex}")
            retrieved_documents = []
            if args.raw:
                retrieved_documents = pipeline.retrieve_raw_documents(
                                        user_query, k=args.k*2)
                logs.logger.info("Raw documents retrieved")
                logs.logger.info(json.dumps(retrieved_documents, indent=4))
                if not retrieved_documents:
                    response ={"summary":"No relevant documents found",
                               "sources":[]}
                else:

                    query_embedding = evaluator.embedder.encode(user_query,
                                            convert_to_tensor=True,normalize_embeddings=True)
                    similarities = [(doc, util.cos_sim(query_embedding,
                                                       evaluator.embedder.encode(doc['content'],
                                                                    convert_to_tensor=True,
                                                                    normalize_embeddings=True)).item())
                                    for doc in retrieved_documents]
                    similarities.sort(key=lambda x: x[1], reverse=True)

                    top_docs = similarities[:min(3, len(similarities))]

                    truncated_content = []
                    for doc, sim in top_docs:
                        content_paragraphs = re.split(r'\n\s*\n', doc['content'].strip())
                        para_sims = [(para, util.cos_sim(query_embedding,
                                                         evaluator.embedder.encode(para.strip(), convert_to_tensor=True,
                                                                                   normalize_embeddings=True)).item())
                                     for para in content_paragraphs if para.strip()]
                        para_sims.sort(key=lambda x: x[1], reverse=True)

                        top_paras = [para for para, para_sim in para_sims[:2] if para_sim >= 0.3]
                        if len(top_paras) < 1:  # Fallback to at least one paragraph
                            top_paras = [para for para, _ in para_sims[:1]]
                        truncated_content.append('\n\n'.join(top_paras))

                    response = {
                    "summary": "\n".join(truncated_content),
                    "sources":[{ "document_id":f"DOC {idx+1}",
                        "page": str(doc['metadata'].get("page_number","NA")),
                        "section": doc['metadata'].get("section","NA"),
                        "clause": doc['metadata'].get("clause","NA")}
                        for idx,(doc,_) in enumerate(top_docs)] }

            else:
                logs.logger.info("LLM+RAG")
                response = pipeline.query(user_query, k=args.k,
                                          include_metadata=True,
                                          user_context=user_context
                                          )
                retrieved_documents = pipeline.retrieve_raw_documents(
                    user_query, k=args.k)


            final_expected_answer = expected_answers if expected_answers is not None else ""
            additional_eval_metrices = {}
            if not query_found:
                logs.logger.info(f"No query found in eval_Data.json: {user_query}")
                raw_reference_for_score = evaluator._syntesize_raw_reference(retrieved_documents)
                if not final_expected_answer.strip():
                    final_expected_answer = raw_reference_for_score

                retrieved_documents_content = [doc.get('content','') for doc in retrieved_documents]
                llm_as_judge = evaluator._evaluate_with_llm(user_query, response.get('summary',''),retrieved_documents_content)
                if llm_as_judge:
                    additional_eval_metrices.update(llm_as_judge)
                    output = {"query": user_query, "response": response, "evaluation": additional_eval_metrices}
                    logs.logger.info(json.dumps(output, indent=4))
                    return json.dumps(output)
                else:
                    output = { "query": user_query, "response":response, "evaluation":llm_as_judge }
                    logs.logger.info(json.dumps(output, indent=4))
                    return json.dumps(output)

            else:

                eval_result = evaluator.evaluate_response(user_query, response, retrieved_documents,
                                                expected_keywords, expected_answers)
                output = { "query": user_query, "response":response, "evaluation":eval_result }
                logs.logger.info(json.dumps(output,indent=2,ensure_ascii=False))

                return json.dumps(output)


        except Exception as ex:
            logs.logger.info(f"Exception in run search job {ex}")
            traceback.print_exc()

    @staticmethod
    def run_hypertune_job(args: argparse.Namespace) -> None:
        try:
            evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
                                     pdf_path=Configuration.FULL_PDF_PATH)

            result = evaluator.evaluate_combined_params_grid(
                chunk_size_to_test=[512,1024,2048],
                chunk_overlap_to_test=[100,200,400],
                embedding_models_to_test=["all-MiniLM-L6-v2",
                                         "all-mpnet-base-v2",
                                         "paraphrase-MiniLM-L3-v2",
                                         "multi-qa-mpnet-base-dot-v1" ],
                vector_db_types_to_test=['pinecone'],
                llm_model_name=args.llm_model,
                re_ranker_model = [ "cross-encoder/ms-marco-MiniLM-L-6-v2",
                    "cross-encoder/ms-marco-TinyBERT-L-2"],
                search_type='random', n_iter=1 )
            # embedding_models_to_test = ["all-MiniLM-L6-v2",
            #                             "all-mpnet-base-v2",
            #                             "paraphrase-MiniLM-L3-v2",
            #                             "multi-qa-mpnet-base-dot-v1"]
            best_parameter = result['best_params']
            best_score = result['best_score']
            pkl_file = result['pkl_file']
            best_metrics = result['best_metrics']

            best_param_path = os.path.join(Configuration.DATA_DIR,'best_params.json')

            with open(best_param_path, 'w') as f:
                json.dump(best_parameter, f, indent=4)

            tuned_db = best_parameter['vector_db_type']
            tuned_path = os.path.join(Configuration.DATA_DIR,'TunedDB',tuned_db)
            if tuned_db != 'pinecone':
                os.makedirs(tuned_path, exist_ok=True)
            tuned_collection_name = "tuned-"+Configuration.COLLECTION_NAME

            tuned_params = {
                'document_path': Configuration.FULL_PDF_PATH,
                'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
                'chunk_overlap': best_parameter.get('chunk_overlap',Configuration.DEFAULT_CHUNK_OVERLAP),
                'embedding_model_name': best_parameter.get('embedding_model',Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
                'vector_db_type': tuned_db,
                'llm_model_name':args.llm_model,
                'db_path':tuned_path if tuned_db !='pinecone' else "",
                'collection_name':tuned_collection_name,
                'vector_db': None,
                're_ranker_model':best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
            }

            if 're_ranker_model' in best_parameter:
                tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
            else:
                tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER

            tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
            tuned_pipeline.build_index()

        except Exception as ex:
            logs.logger.info(f"Exception in hypertune: {ex} ")
            traceback.print_exc()


    @staticmethod
    def run_llm_with_prompt(args: argparse.Namespace,run_type: str) -> None:
        try:
            params = RAGOperations.get_pipeline_params(args,
                                        use_tuned=args.use_tuned)
            pipeline = RAGOperations.initialize_pipeline(params)


            evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
                                     pdf_path=Configuration.FULL_PDF_PATH)

            system_message = (
                "You are an expert assistant for Flykite Airlines HR Policy Queries."
                "Provide concise, accurate and policy-specific answers based solely on the the provided context."
                "Structured your response clearly, using bullet points, newlines if applicable. "
                "If the context lacks information, state that clearly and speculation."
            ) if run_type == 'prompting' else None

            user_query = input("Enter your query: ")
            expected_answer = None
            expected_keywords = []
            try:
                with open(Configuration.EVAL_DATA_PATH, 'r') as f:
                    eval_data= json.load(f)
                for item in eval_data:
                    expected_answer = item.get('expected_answer_snippet',"")
                    expected_keywords = item.get('expected_keywords',[])
                    break
            except Exception as ex:
                logs.logger.info(f"Error loading eval_data.json for query {user_query}: {ex}")

            if run_type == 'prompting':
                prompt = (
                    f"You are an expert assistant for Flykite Airlines HR Policy Queries."
                    f"Answer the following question with a structured response, using bullet points or sections where applicable"
                    f"Base your answer solely on the query and avoid hallucination"
                    f"Question: \n {user_query} \n"
                    f"Answer: ")

            else:
                prompt = user_query

            response = pipeline.llm.generate_response(
                    prompt=prompt,
                    system_message=system_message,
                    temperature = args.temperature,
                    top_p = args.top_p,
                    max_tokens = args.max_tokens
                )
            retreived_documents = []

            eval_result = evaluator.evaluate_response(user_query,
                                                response,
                                                retreived_documents,
                                                expected_keywords,
                                                expected_answer)

            output = {  "query":user_query,
                        "response": {
                             "summary: ":response.strip(),
                            "source: ":["LLM Response Not RAG loaded"]},
                        "evaluation": eval_result }


            logs.logger.info(json.dumps(output, indent=2))

        except Exception as ex:
            logs.logger.info(f"Exception in LLm_prompting response: {ex}")
            traceback.print_exc()
            sys.exit(1)

    @staticmethod
    def login() -> Dict[str,str]:
        username = input("Enter your username: ")
        password = input("Enter your password: ")

        hashed_password = hashlib.sha256(password.encode()).hexdigest()
        try:
            conn = sqlite3.connect('users.db')
            cursor = conn.cursor()
            cursor.execute(
                "SELECT username,jobrole,department,location FROM users WHERE username = ? AND password = ?",
                (username, hashed_password)
            )
            user = cursor.fetchone()
            logs.logger.info(f"{user}")
            conn.close()
            if user:
                return {"username": user[0], "role": user[1],"department": user[2],"location": user[3]}
            else:
                logs.logger.info("Invalid username or password")
                sys.exit(1)

        except sqlite3.Error as ex:

            return False