Spaces:
Sleeping
Sleeping
File size: 24,228 Bytes
afe32f0 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 adebd02 ebc6cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import streamlit
import os
import sys
import json
import argparse
import warnings
import traceback
import logs
import chromadb
import hashlib
import sqlite3
import regex as re
from pinecone import Pinecone
from typing import Optional, Dict, Any
from sentence_transformers import SentenceTransformer, util
os.environ["TF_CPP_MIN_LOG_LEVEL"]="3"
warnings.filterwarnings("ignore")
sys.path.insert(0,os.path.abspath(os.path.join(os.path.dirname(__file__),'src')))
from sentence_transformers import SentenceTransformer
from configuration import Configuration
from rag_scripts.rag_pipeline import RAGPipeline
from rag_scripts.documents_processing.chunking import PyMuPDFChunker
from rag_scripts.embedding.embedder import SentenceTransformerEmbedder
from rag_scripts.embedding.vector_db.chroma_db import chromaDBVectorDB
from rag_scripts.embedding.vector_db.faiss_db import FAISSVectorDB
from rag_scripts.embedding.vector_db.pinecone_db import PineconeVectorDB
from rag_scripts.llm.llmResponse import GROQLLM
from rag_scripts.evaluation.evaluator import RAGEvaluator
class RAGOperations:
VALID_VECTOR_DB = {'chroma','faiss','pinecone'}
@staticmethod
def check_db(vector_db_type: str, db_path: str, collection_name: str) -> bool:
try:
if vector_db_type not in RAGOperations.VALID_VECTOR_DB:
logs.logger.info(f"Invalid Vector DB: {vector_db_type}")
raise
if vector_db_type.lower() == 'pinecone':
pc = Pinecone(api_key=Configuration.PINECONE_API_KEY)
return collection_name in pc.list_indexes().names()
elif vector_db_type.lower() == 'chroma':
return os.path.exists(db_path) and os.listdir(db_path)
elif vector_db_type.lower() == "faiss":
faiss_index_file = os.path.join(db_path,f"{collection_name}.faiss")
faiss_doc_store_file = os.path.join(db_path,f"{collection_name}_docs.pkl")
return os.path.exists(faiss_index_file) and os.path.exists(faiss_doc_store_file)
except Exception as ex:
logs.logger.info(f"Exception in checking {vector_db_type} existence")
logs.logger.info(traceback.print_exc())
return False
@staticmethod
def get_pipeline_params(args: argparse.Namespace, use_tuned: bool = False) -> Dict[str,Any]:
try:
best_param_path = os.path.join(Configuration.DATA_DIR,'best_params.json')
params = {
'document_path':Configuration.FULL_PDF_PATH,
'chunk_size':args.chunk_size,
'chunk_overlap':args.chunk_overlap,
'embedding_model_name':args.embedding_model,
'vector_db_type':args.vector_db_type,
'llm_model_name':args.llm_model,
'db_path': None,
'collection_name': Configuration.COLLECTION_NAME,
'vector_db': None,
'temperature': args.temperature,
'top_p':args.top_p,
'max_tokens':args.max_tokens,
're_ranker_model':args.re_ranker_model
}
if os.path.exists(best_param_path):
with open(best_param_path,'rb') as f:
best_params = json.load(f)
logs.logger.info(f"Best params: {best_params} from the file {best_param_path}")
params.update({
'vector_db_type': best_params.get('vector_db_type',params['vector_db_type']),
'embedding_model_name': best_params.get('embedding_model',params['embedding_model_name']),
'chunk_overlap': best_params.get('chunk_overlap',params['chunk_overlap']),
'chunk_size': best_params.get('chunk_size',params['chunk_size']) ,
're_ranker_model': best_params.get('re_ranker_model',params['re_ranker_model']) })
use_tuned = True
if use_tuned:
tuned_db_type = params['vector_db_type']
params['db_path'] = os.path.join(Configuration.DATA_DIR,'TunedDB',tuned_db_type) if tuned_db_type != 'pinecone' else ""
params['collection_name'] = 'tuned-'+Configuration.COLLECTION_NAME
if tuned_db_type in ['chroma','faiss']:
os.makedirs(params['db_path'],exist_ok=True)
logs.logger.info(f"Tuned db path: {params['db_path']}")
else:
params['db_path'] = ( Configuration.CHROMA_DB_PATH if params['vector_db_type'] == 'chroma'
else Configuration.FAISS_DB_PATH if params['vector_db_type'] == 'faiss'
else "")
if params['vector_db_type'] in ['chroma', 'faiss']:
os.makedirs(params['db_path'],exist_ok=True)
logs.logger.info(f"Created directory for {params['vector_db_type']} at {params['db_path']}")
return params
except Exception as ex:
logs.logger.info(f"Exception in get_pipeline_params: {ex}")
logs.logger.info(traceback.print_exc())
sys.exit(1)
@staticmethod
def check_embedding_dimension(vector_db_type: str,db_path: str,
collection_name: str, embedding_model: str) -> bool:
if vector_db_type !='chroma':
return True
try:
client = chromadb.PersistentClient(path=db_path)
collection = client.get_collection(collection_name)
model = SentenceTransformer(embedding_model)
sample_embedding = model.encode(["test"])[0]
try:
expected_dim = collection._embedding_function.dim
except AttributeError:
peek_result = collection.peek(limit=1)
if 'embedding' in peek_result and peek_result['embedding']:
expected_dim = len(peek_result['embedding'][0])
else:
return False
actual_dim = len(sample_embedding)
logs.logger.info(f"Expected dimension: {expected_dim} Actual dimension: {actual_dim}")
return expected_dim == actual_dim
except Exception as ex:
logs.logger.info(f"Error checking embedding dimension: {ex}")
return False
@staticmethod
def initialize_pipeline(params: dict[str,Any]) -> RAGPipeline:
try:
embedder = SentenceTransformerEmbedder(model_name=params['embedding_model_name'])
chunkerObj = PyMuPDFChunker(
pdf_path=params['document_path'],
chunk_size=params['chunk_size'],
chunk_overlap=params['chunk_overlap'])
llm_model = params['llm_model_name']
vector_db = None
if params['vector_db_type'] == 'chroma':
vector_db = chromaDBVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
elif params['vector_db_type'] == 'faiss':
vector_db = FAISSVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'] )
elif params['vector_db_type'] == 'pinecone':
vector_db = PineconeVectorDB(embedder=embedder,
db_path=params['db_path'],
collection_name=params['collection_name'])
else:
raise ValueError(f"Unknown vector_db_type: {params['vector_db_type']}")
return RAGPipeline( document_path=params['document_path'],
chunker=chunkerObj, embedder=embedder,
vector_db=vector_db,
llm=GROQLLM(model_name= llm_model),
re_ranker_model_name=params['re_ranker_model'] if params['re_ranker_model'] else Configuration.DEFAULT_RERANKER,)
except Exception as ex:
logs.logger.info(f"Exception in pipeline initialize: {ex}")
traceback.print_exc()
sys.exit(1)
@staticmethod
def run_build_job(args: argparse.Namespace) -> None:
try:
params = RAGOperations.get_pipeline_params(args)
pipeline = RAGOperations.initialize_pipeline(params)
pipeline.build_index()
logs.logger.info(f"RAG Build JOB completed")
except Exception as ex:
logs.logger.info(f"Exception in run build job: {ex}")
traceback.print_exc()
sys.exit(1)
@staticmethod
def run_search_job(args: argparse.Namespace,user_info: Dict[str,str]) -> None:
try:
params = RAGOperations.get_pipeline_params(args, use_tuned=args.use_tuned)
vector_db_type = params['vector_db_type']
db_path = params['db_path']
collection_name = params['collection_name']
pipeline = RAGOperations.initialize_pipeline(params)
db_exists = RAGOperations.check_db(vector_db_type,db_path,collection_name)
if args.use_rag:
if not db_exists:
pipeline.build_index()
elif pipeline.vector_db.count_documents() == 0:
pipeline.build_index()
elif not RAGOperations.check_embedding_dimension(vector_db_type,db_path,
collection_name,params['embedding_model_name'] ):
logs.logger.info(f"Embedding dimension mismatch. rebuilding the index")
pipeline.vector_db.delete_collection(collection_name)
pipeline.build_index()
else:
logs.logger.info(f"Using existing {vector_db_type} database with collection: {collection_name}")
if pipeline.vector_db.count_documents() == 0:
logs.logger.info(f"No Documents found in vector database after re-build")
sys.exit(1)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
user_query = args.query if args.query else (
input("Enter your Query: "))
if user_query.lower() == 'exit':
return
user_context = {"role": user_info['role'],
"location": user_info['location'],
"department":user_info['department'] }
expected_answers = None
expected_keywords = []
query_found = False
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data = json.load(f)
for item in eval_data:
if item.get('query').strip().lower() == user_query.strip().lower():
expected_keywords = item.get('expected_keywords',[])
expected_answers = item.get('expected_answer_snippet',"")
query_found = True
break
if not expected_keywords and not expected_answers:
logs.logger.info(f"No evaluation data found for query in json")
except Exception as ex:
logs.logger.info(f"No json file : {ex}")
retrieved_documents = []
if args.raw:
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=args.k*2)
logs.logger.info("Raw documents retrieved")
logs.logger.info(json.dumps(retrieved_documents, indent=4))
if not retrieved_documents:
response ={"summary":"No relevant documents found",
"sources":[]}
else:
query_embedding = evaluator.embedder.encode(user_query,
convert_to_tensor=True,normalize_embeddings=True)
similarities = [(doc, util.cos_sim(query_embedding,
evaluator.embedder.encode(doc['content'],
convert_to_tensor=True,
normalize_embeddings=True)).item())
for doc in retrieved_documents]
similarities.sort(key=lambda x: x[1], reverse=True)
top_docs = similarities[:min(3, len(similarities))]
truncated_content = []
for doc, sim in top_docs:
content_paragraphs = re.split(r'\n\s*\n', doc['content'].strip())
para_sims = [(para, util.cos_sim(query_embedding,
evaluator.embedder.encode(para.strip(), convert_to_tensor=True,
normalize_embeddings=True)).item())
for para in content_paragraphs if para.strip()]
para_sims.sort(key=lambda x: x[1], reverse=True)
top_paras = [para for para, para_sim in para_sims[:2] if para_sim >= 0.3]
if len(top_paras) < 1: # Fallback to at least one paragraph
top_paras = [para for para, _ in para_sims[:1]]
truncated_content.append('\n\n'.join(top_paras))
response = {
"summary": "\n".join(truncated_content),
"sources":[{ "document_id":f"DOC {idx+1}",
"page": str(doc['metadata'].get("page_number","NA")),
"section": doc['metadata'].get("section","NA"),
"clause": doc['metadata'].get("clause","NA")}
for idx,(doc,_) in enumerate(top_docs)] }
else:
logs.logger.info("LLM+RAG")
response = pipeline.query(user_query, k=args.k,
include_metadata=True,
user_context=user_context
)
retrieved_documents = pipeline.retrieve_raw_documents(
user_query, k=args.k)
final_expected_answer = expected_answers if expected_answers is not None else ""
additional_eval_metrices = {}
if not query_found:
logs.logger.info(f"No query found in eval_Data.json: {user_query}")
raw_reference_for_score = evaluator._syntesize_raw_reference(retrieved_documents)
if not final_expected_answer.strip():
final_expected_answer = raw_reference_for_score
retrieved_documents_content = [doc.get('content','') for doc in retrieved_documents]
llm_as_judge = evaluator._evaluate_with_llm(user_query, response.get('summary',''),retrieved_documents_content)
if llm_as_judge:
additional_eval_metrices.update(llm_as_judge)
output = {"query": user_query, "response": response, "evaluation": additional_eval_metrices}
logs.logger.info(json.dumps(output, indent=4))
return json.dumps(output)
else:
output = { "query": user_query, "response":response, "evaluation":llm_as_judge }
logs.logger.info(json.dumps(output, indent=4))
return json.dumps(output)
else:
eval_result = evaluator.evaluate_response(user_query, response, retrieved_documents,
expected_keywords, expected_answers)
output = { "query": user_query, "response":response, "evaluation":eval_result }
logs.logger.info(json.dumps(output,indent=2,ensure_ascii=False))
return json.dumps(output)
except Exception as ex:
logs.logger.info(f"Exception in run search job {ex}")
traceback.print_exc()
@staticmethod
def run_hypertune_job(args: argparse.Namespace) -> None:
try:
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
result = evaluator.evaluate_combined_params_grid(
chunk_size_to_test=[512,1024,2048],
chunk_overlap_to_test=[100,200,400],
embedding_models_to_test=["all-MiniLM-L6-v2",
"all-mpnet-base-v2",
"paraphrase-MiniLM-L3-v2",
"multi-qa-mpnet-base-dot-v1" ],
vector_db_types_to_test=['pinecone'],
llm_model_name=args.llm_model,
re_ranker_model = [ "cross-encoder/ms-marco-MiniLM-L-6-v2",
"cross-encoder/ms-marco-TinyBERT-L-2"],
search_type='random', n_iter=1 )
# embedding_models_to_test = ["all-MiniLM-L6-v2",
# "all-mpnet-base-v2",
# "paraphrase-MiniLM-L3-v2",
# "multi-qa-mpnet-base-dot-v1"]
best_parameter = result['best_params']
best_score = result['best_score']
pkl_file = result['pkl_file']
best_metrics = result['best_metrics']
best_param_path = os.path.join(Configuration.DATA_DIR,'best_params.json')
with open(best_param_path, 'w') as f:
json.dump(best_parameter, f, indent=4)
tuned_db = best_parameter['vector_db_type']
tuned_path = os.path.join(Configuration.DATA_DIR,'TunedDB',tuned_db)
if tuned_db != 'pinecone':
os.makedirs(tuned_path, exist_ok=True)
tuned_collection_name = "tuned-"+Configuration.COLLECTION_NAME
tuned_params = {
'document_path': Configuration.FULL_PDF_PATH,
'chunk_size': best_parameter.get('chunk_size', Configuration.DEFAULT_CHUNK_SIZE),
'chunk_overlap': best_parameter.get('chunk_overlap',Configuration.DEFAULT_CHUNK_OVERLAP),
'embedding_model_name': best_parameter.get('embedding_model',Configuration.DEFAULT_SENTENCE_TRANSFORMER_MODEL),
'vector_db_type': tuned_db,
'llm_model_name':args.llm_model,
'db_path':tuned_path if tuned_db !='pinecone' else "",
'collection_name':tuned_collection_name,
'vector_db': None,
're_ranker_model':best_parameter.get('re_ranker', Configuration.DEFAULT_RERANKER)
}
if 're_ranker_model' in best_parameter:
tuned_params['re_ranker_model'] = best_parameter['re_ranker_model']
else:
tuned_params['re_ranker_model'] = Configuration.DEFAULT_RERANKER
tuned_pipeline = RAGOperations.initialize_pipeline(tuned_params)
tuned_pipeline.build_index()
except Exception as ex:
logs.logger.info(f"Exception in hypertune: {ex} ")
traceback.print_exc()
@staticmethod
def run_llm_with_prompt(args: argparse.Namespace,run_type: str) -> None:
try:
params = RAGOperations.get_pipeline_params(args,
use_tuned=args.use_tuned)
pipeline = RAGOperations.initialize_pipeline(params)
evaluator = RAGEvaluator(eval_data_path=Configuration.EVAL_DATA_PATH,
pdf_path=Configuration.FULL_PDF_PATH)
system_message = (
"You are an expert assistant for Flykite Airlines HR Policy Queries."
"Provide concise, accurate and policy-specific answers based solely on the the provided context."
"Structured your response clearly, using bullet points, newlines if applicable. "
"If the context lacks information, state that clearly and speculation."
) if run_type == 'prompting' else None
user_query = input("Enter your query: ")
expected_answer = None
expected_keywords = []
try:
with open(Configuration.EVAL_DATA_PATH, 'r') as f:
eval_data= json.load(f)
for item in eval_data:
expected_answer = item.get('expected_answer_snippet',"")
expected_keywords = item.get('expected_keywords',[])
break
except Exception as ex:
logs.logger.info(f"Error loading eval_data.json for query {user_query}: {ex}")
if run_type == 'prompting':
prompt = (
f"You are an expert assistant for Flykite Airlines HR Policy Queries."
f"Answer the following question with a structured response, using bullet points or sections where applicable"
f"Base your answer solely on the query and avoid hallucination"
f"Question: \n {user_query} \n"
f"Answer: ")
else:
prompt = user_query
response = pipeline.llm.generate_response(
prompt=prompt,
system_message=system_message,
temperature = args.temperature,
top_p = args.top_p,
max_tokens = args.max_tokens
)
retreived_documents = []
eval_result = evaluator.evaluate_response(user_query,
response,
retreived_documents,
expected_keywords,
expected_answer)
output = { "query":user_query,
"response": {
"summary: ":response.strip(),
"source: ":["LLM Response Not RAG loaded"]},
"evaluation": eval_result }
logs.logger.info(json.dumps(output, indent=2))
except Exception as ex:
logs.logger.info(f"Exception in LLm_prompting response: {ex}")
traceback.print_exc()
sys.exit(1)
@staticmethod
def login() -> Dict[str,str]:
username = input("Enter your username: ")
password = input("Enter your password: ")
hashed_password = hashlib.sha256(password.encode()).hexdigest()
try:
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
cursor.execute(
"SELECT username,jobrole,department,location FROM users WHERE username = ? AND password = ?",
(username, hashed_password)
)
user = cursor.fetchone()
logs.logger.info(f"{user}")
conn.close()
if user:
return {"username": user[0], "role": user[1],"department": user[2],"location": user[3]}
else:
logs.logger.info("Invalid username or password")
sys.exit(1)
except sqlite3.Error as ex:
return False
|